Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Photolyse von caged-Verbindungen ermöglicht die Produktion von schnellen und lokalisierten Anstieg der Konzentration von verschiedenen physiologisch aktiven Verbindungen. Hier zeigen wir, wie Patch-Clamp-Aufnahmen mit der Photolyse von caged cAMP kombiniert oder caged Ca für das Studium der olfaktorischen Wahrnehmung in dissoziierten Maus Riechzellen erhalten.
Photolyse von caged-Verbindungen ermöglicht die Produktion von schnellen und lokalisierten Anstieg der Konzentration von verschiedenen physiologisch aktive Verbindungen 1. Caged-Verbindungen sind Moleküle aus physiologisch inaktiv durch eine chemische Käfig, der durch einen Blitz von UV-Licht gebrochen werden kann. Hier zeigen wir, wie Patch-Clamp-Aufnahmen mit der Photolyse von caged-Verbindungen für das Studium der olfaktorischen Wahrnehmung in dissoziierten Maus Riechzellen kombiniert zu erhalten. Der Prozess der olfaktorischen Wahrnehmung (Abbildung 1) erfolgt in den Cilien von Riechzellen, wo Geruchsstoff Bindung an Rezeptoren führt zu einer Erhöhung der cAMP, dass zyklische Nukleotid-gesteuerte (CNG)-Kanäle 2 öffnet. Ca Eintrag durch CNG-Kanäle aktiviert Ca-aktivierte Cl-Kanäle. Wir zeigen, wie die Neuronen aus dem olfaktorischen Epithel der Maus 3 und wie CNG-Kanäle oder Ca-aktivierte Cl-Kanäle durch Photolyse von caged cAMP 4 oder caged Ca 5 aktivieren distanzieren </ Sup>. Wir verwenden eine Blitzlampe 6,7 gegenüber UV-Blitze, die Ciliargegend gelten Uncage cAMP oder Ca während Patch-Clamp-Aufnahmen getroffen werden, um den Strom in der whole-cell Voltage-Clamp-Konfiguration 8-11 messen.
1. Instrumentation
2. Preparing solutions
Dissection
Patch-clamp recording solutions
Extracellular solutions
Intracellular solutions
Always prepare and use caged compound solutions in dim light to avoid degradation of caged compounds from ambient light. Protect containers from light using aluminum foil.
Caged cAMP:
Caged Ca:
We prepare intracellular solutions containing 3 mM DMNP-EDTA5 50% loaded with 1.5 mM Ca.
Notes: During experiments, protect caged compound solutions from light using aluminum foil and keep them on ice. Sterile filter the intracellular solution.
3. Dissociation of mouse olfactory sensory neurons
Animals were handled in accordance with the Italian Guidelines for the Use of Laboratory Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal research (No. 86/609/EEC).
4. Recording
5. Representative results:
You should be able to produce local uncaging of caged cAMP or of caged Ca in the ciliary region of an isolated olfactory sensory neuron and record the current response in the whole-cell voltage-clamp configuration.
Figure 4 shows a typical inward current elicited by a UV flash producing photolysis of caged cAMP, recorded at a voltage of -60 mV in the presence of an extracellular low Ca Ringer’s solution. In this condition the inward current is due to Na entry through CNG channels. The rising phase of the current was fast and was fitted by a single exponential function with a time constant of 3.4 ms.
Figure 5A-B show the responses of another olfactory sensory neuron in low Ca and in Ringer’s solution with 1mM Ca. The rising phase of the current at -60 mV became much slower and multiphasic (Figure 5 A-B). This is due to the action of Ca entering the cilia through CNG channels and activating a secondary Cl current10. The earlier cationic current component, due to activation of CNG, is smaller in 1mM Ca Ringer solution than in low Ca solution because of the block due to the permeating Ca ions that reduce the overall current.
Another way to reduce the increase of Ca in the cilia is to clamp the neuron at +60 mV (Figure 5 C-D). The rising phase of the response due to cAMP uncaging at +60 mV was well described by a single exponential with a time constant of 6.7 ms, indicating the presence of only one current component.
By photoreleasing Ca inside the cilia of an olfactory sensory neuron you should be able to measure a rapidly rising current. This current is carried by Cl ions. Figure 6 A shows inward currents at -50 mV induced by photorelease of caged Ca in response to UV flashes of different intensities. The rising phase of the Ca-activated Cl currents was well described by a single exponential with time constants varying between 3.8 to 5 ms (Figure 6 B).
Figure 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) activating a G protein that in turns activates adenylyl cyclase (ACIII) producing an intracellular increase in cAMP. cAMP opens cyclic nucleotide-gated (CNG) channels allowing the entry of Na and Ca ions. The intracellular Ca increase activates Ca-activated Cl channels. Caged cAMP or caged Ca can be introduced in the cilia diffusing through a patch pipette. A flash of UV light produces photolysis of the caged compound (Modified, with permission, from Pifferi et al. 20062).
Figure 2. The patch-clamp recording and flash photolysis system. The set-up components include a patch-clamp amplifier, a computer, a digitizer, an epifluorescence microscope, a Xenon flash lamp, a CCD camera and a monitor. Blue and violet lines indicate respectively the visible and UV light path.
Figure 3. Xenon flash lamp. (A) Light source used for flash photolysis of caged compounds. (B) Photodiode module used to evaluate the intensity of the light flash. (C) The light guide from the flash lamp was connected to the input of the photodiode and the output was visualized onto an oscilloscope. One of the three available capacitance values (C1, C2 or C3) was selected on the front panel switch of the flash lamp and the voltage was changed turning the knob on the front panel. The output voltage from the photodiode in response to different flash intensities was plotted versus the applied voltage for each capacitance value: C1 = 1000 μF, C2 = 2000 μF, or C3 = 3000 μF. A 600 μm diameter light guide was used.
Figure 4. Patch-clamp recording in response to photolysis of caged cAMP in low extracellular Ca solution. (A) Whole-cell current response induced in an isolated olfactory sensory neuron by photolysis of caged cAMP localized to the cilia. A UV flash was released at the time indicated by the arrow. The holding potential was -60 mV. (B) The current rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.4 ms.
Figure 5. Current responses induced by photolysis of caged cAMP in low Ca and in Ringer solutions. (A) An olfactory sensory neuron was bathed in Ringer solution containing 1 mM Ca or in low Ca solution at the holding potential of -60 mV. A UV flash was released at the time indicated by the arrow. (B) Current responses plotted on an expanded timescale showed a multiphasic rising phase in Ringer, while the rising phase was well fitted with a single exponential function (dotted line) with a time constant of 3.5 ms for the response recorded in low Ca solution. (C) Currents responses from the same neuron shown in (A) bathed in Ringer’s solution at the holding potential of -60 and +60 mV. (D) Current responses plotted on an expanded timescale displayed a multiphasic rising phase at -60 mV, whereas at +60 mV the rising phase was well fitted by a single exponential with a time constant of 6.7 ms (dotted line).
Figure 6. Responses to photolysis of caged Ca. (A) Whole-cell currents induced by photolysis of caged Ca at -50 mV. UV flashes were released at the time indicated by the arrow. Flash intensities were varied with neutral density filters. (B) Expanded timescale shows the rapid increase in the current after Ca photorelease. Currents were well fitted by a single exponential function (dotted lines), with time constants of 5, 4.8, 3.8 ms. (Reproduced, with permission, from Boccaccio & Menini, 200710).
Flash-Photolyse von caged Verbindungen mit Patch-Clamp-Aufnahmen kombiniert ist eine nützliche Technik, um schnelle und lokale Sprünge in der Konzentration der physiologisch aktive Moleküle sowohl innerhalb als auch außerhalb der Zellen zu erhalten. Mehrere Arten von Käfigen Verbindungen1 wurden synthetisiert, und diese Technik kann auf verschiedene Arten von Zellen, einschließlich kultivierten Zellen, die Ionenkanäle, die aktiviert oder moduliert werden durch Photolyse von einigen der verfügbaren caged Verbindu...
Keine Interessenskonflikte erklärt.
Name | Company | Catalog Number | Comments |
Ausrüstung | Firma | Katalog-Nummer | Kommentare |
---|---|---|---|
Adapter-Modul Flash-Lampe Mikroskop | Rapp Optoelectronic | Blitzwürfel 70 | |
Air Tisch | TMC | MICRO-g 63-534 | |
Digitizer | Axon Instruments | Digidata 1322a | |
Data Acquisition Software | Axon Instruments | pClamp 8 | |
Data Analysis Software | WaveMetrics | Igor | |
Spiegel für Adapter-Modul | Rapp Optoelectronic | M70/100 | |
Elektrodenhalter | Axon Instruments | 1-HL-U | |
Faraday-Käfig | Custom made | ||
Filter-Würfel | Olymp | U-MWU | Excitation Filter entfernt |
Flash-Lampe | Rapp Optoelectronic | JML-C2 | |
Pinzetten Dumont Nr. 55 | World Precision Instruments | 14099 | |
Glaskapillaren | World Precision Instruments | PG10165-4 | |
Glasboden Gericht | World Precision Instruments | FD35-100 | |
Illuminator | Olymp | Highlight 3100 | |
Inverse Mikroskop | Olymp | IX70 | |
Mikromanipulatoren | Luigs & Neumann | SM I | |
Micropipette Puller | Narishige | PP-830 | |
Monitor | HesaVision | MTB-01 | |
Neutralfilter | Omega Optical | variiert | |
Ziel 100X | Zeiss | Fluar 440285 | Entweder Zeiss oder Olympus |
Ziel 100X | Olymp | UPLFLN 100XOI2 | Entweder Zeiss oder Olympus |
Optische UV Kurzpassfilter | Rapp Optoelectronic | SP400 | |
Patch-Clamp-Verstärkers | Axon Instruments | Axopatch 200B | |
Photo Diode Assembly | Rapp Optoelectronic | PDA | |
Quartz-Lichtleiter | Rapp Optoelectronic | variiert | Wir verwenden 600 pm Durchmesser |
Silberdraht | World Precision Instruments | AGT1025 | |
Silber Boden Pellet | Warner Instrumente | 64-1309 | |
Xenon-Bogenlampe | Rapp Optoelectronic | XBL-JML |
Reagens | Firma | Katalog-Nummer |
---|---|---|
BCMCM-caged cAMP | BioLog | B016 |
Rinderserumalbumin (BSA) | Sigma | A8806 |
CaCl2-Standard-Lösung 0,1 M | Fluka | 21059 |
Caged Ca: DMNP-EDTA | Invitrogen | D6814 |
Cystein | Sigma | C9768 |
Concanavalin A-Typ V (ConA) | Sigma | C7275 |
CsCl | Sigma | C4036 |
DMSO | Sigma | D8418 |
DNAse I | Sigma | D4527 |
EDTA | Sigma | E9884 |
EGTA | Sigma | E4378 |
Glucose | Sigma | G5767 |
HEPES | Sigma | H3375 |
KCl | Sigma | P3911 |
KOH | Sigma | P1767 |
Leupeptin | Sigma | L0649 |
MgCl2 | Fluka | 63020 |
Papain | Sigma | P3125 |
Poly-L-Lysin | Sigma | P1274 |
NaCl | Sigma | S9888 |
NaOH | Sigma | S5881 |
NaPyruvate | Sigma | P2256 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten