Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Luftverschmutzung wirkt sich auf die Lebensqualität aller Organismen aus. Hier beschreiben wir den Einsatz der Mikroalgen-Biotechnologie zur Aufbereitung von Biogas (gleichzeitige Entfernung von Kohlendioxid und Schwefelwasserstoff) und die Produktion von Biomethan durch semi-industrielle offene Hochraten-Algenteiche und die anschließende Analyse der Aufbereitungseffizienz, des pH-Werts, des gelösten Sauerstoffs und des Mikroalgenwachstums.
In den letzten Jahren sind eine Reihe von Technologien entstanden, um Biogas zu Biomethan zu reinigen. Diese Reinigung beinhaltet eine Verringerung der Konzentration von umweltschädlichen Gasen wie Kohlendioxid und Schwefelwasserstoff, um den Methangehalt zu erhöhen. In dieser Studie haben wir eine Mikroalgenkultivierungstechnologie verwendet, um Biogas, das aus organischen Abfällen aus der Schweineindustrie hergestellt wird, zu behandeln und zu reinigen, um gebrauchsfertiges Biomethan zu erhalten. Für die Kultivierung und Reinigung wurden zwei 22,2m3 große Open-Pond-Photobioreaktoren gekoppelt mit einem Absorptions-Desorptions-Kolonnensystem in San Juan de los Lagos, Mexiko, errichtet. Es wurden mehrere Rezirkulations-Flüssigkeits-/Biogas-Verhältnisse (L/G) getestet, um die höchsten Abscheidewirkungsgrade zu erzielen. andere Parameter wie pH-Wert, gelöster Sauerstoff (DO), Temperatur und Biomassewachstum wurden gemessen. Die effizientesten L/G-Werte waren 1,6 und 2,5, was zu einem behandelten Biogasablauf mit einer Zusammensetzung von 6,8 Vol.-% bzw. 6,6 Vol.-% inCO2 und einer Abscheideeffizienz fürH2Svon bis zu 98,9 % sowie zur Aufrechterhaltung vonO2-Kontaminationswerten von weniger als 2 Vol.-% führte. Wir fanden heraus, dass der pH-Wert die CO2 - Entfernung während der Kultivierung stärker bestimmt als L/G, da er am Photosyntheseprozess von Mikroalgen beteiligt ist und aufgrund seiner sauren Natur den pH-Wert bei der Lösung variieren kann. DO, und die Temperatur oszillierte, wie erwartet aus den natürlichen Hell-Dunkel-Zyklen der Photosynthese bzw. der Tageszeit. Das Wachstum der Biomasse variierte mit der CO2 - und Nährstoffzufuhr sowie der Reaktorernte; Der Trend blieb jedoch auf Wachstum ausgerichtet.
In den letzten Jahren sind mehrere Technologien entstanden, um Biogas zu Biomethan zu reinigen, seine Verwendung als nicht-fossiler Brennstoff zu fördern und so die unvermeidbaren Methanemissionen zu verringern1. Luftverschmutzung ist ein Problem, das den größten Teil der Weltbevölkerung betrifft, insbesondere in städtischen Gebieten. Schließlich atmen rund 92 % der Weltbevölkerung verschmutzte Luftein 2. In Lateinamerika werden die Luftverschmutzungsraten hauptsächlich durch die Verwendung von Brennstoffen verursacht, wobei im Jahr 2014 48 % der Luftverschmutzung durch den Sektor der Strom- und Wärmeerzeugung verursacht....
1. Aufbau des Systems
HINWEIS: Ein Rohrleitungs- und Instrumentierungsdiagramm (P&ID) des in diesem Protokoll beschriebenen Systems ist in Abbildung 2 dargestellt.
Dem Protokoll folgend, wurde das System gebaut, getestet und geimpft. Die Bedingungen wurden gemessen und gespeichert, die Proben entnommen und analysiert. Das Protokoll wurde ein Jahr lang durchgeführt, von Oktober 2019 bis Oktober 2020. Es ist wichtig zu erwähnen, dass die HRAPs von nun an als RT3 und RT4 bezeichnet werden.
Biomethan-Produktivität
Um die Bedingungen zu bestimmen, die die höchsteH2S- und CO2-Entfernung und damit die höchste Metha.......
Im Laufe der Jahre wurde diese Algentechnologie getestet und als Alternative zu den harten und teuren physikalisch-chemischen Techniken zur Reinigung von Biogas eingesetzt. Insbesondere die Gattung Arthrospira wird zusammen mit Chlorella häufig für diesen speziellen Zweck verwendet. Es gibt jedoch nur wenige Methoden, die in halbindustriellem Maßstab hergestellt werden, was diesem Verfahren einen Mehrwert verleiht.
Es ist wichtig, niedrigereO2-Konzentrationen au.......
Interessenkonflikt. Die Autoren erklären, dass sie keinen Interessenkonflikt haben.
Wir danken der DGAPA UNAM Projektnummer IT100423 für die Teilfinanzierung. Wir danken PROAN und GSI auch dafür, dass sie uns die Möglichkeit gegeben haben, technische Erfahrungen über ihre photosynthetischen Biogas-Aufbereitungsanlagen zu teilen. Die technische Unterstützung von Pedro Pastor Hernández Guerrero, Carlos Martin Sigala, Juan Francisco Díaz Márquez, Margarita Elizabeth Cisneros Ortiz, Roberto Sotero Briones Méndez und Daniel de los Cobos Vasconcelos wird sehr geschätzt. Ein Teil dieser Forschung wurde im IIUNAM Environmental Engineering Laboratory mit einem ISO 9001:2015-Zertifikat durchgeführt.
....Name | Company | Catalog Number | Comments |
1" rotameter | CICLOTEC | N/A | |
1" rotameter | GPI | A10-LMA100IA1 | |
Absorption tank | EFISA | Made under previous design | |
Air blower (2.35 HP) | Elmo Rietschle | 2BH11007AH01 | |
Biogas blower (2 HP) | Elmo Rietschle | 2BH11007AH01 | |
Biogas composition measure | Geotech | BIOGAS 5000 | |
Data-acquisition device | LabJack Co. | U3-LV | |
Diffuser tubes | Aero-Tube | C3060AR | |
DO sensor | Applisens | Z10023525 | |
Dodecahydrated trisodium phosphate | Quimica PIMA | N/A | Fertilizer grade (greenhouse and experior use) |
Dodecahydrated trisodium phosphate | Fermont | 35963 | Analytical grade (Used in cultures inside the laboratory) |
Durapore membrane (45 µm) | MerckMillipore | HVLP04700 | |
Electric motor 1.5 HP | Weg | 00158ET3ERS56C | |
Ferrous sulfate heptahydrate | Agroquimica Samet | N/A | Fertilizer grade (greenhouse and experior use) |
Ferrous sulfate heptahydrate | Fermont | 63593 | Analytical grade (Used in cultures inside the laboratory) |
Geomembrane | GEOSINCERE | N/A | |
Magnesium sulfate heptahydrate | Tepeyac | N/A | Fertilizer grade (greenhouse and experior use) |
Magnesium sulfate heptahydrate | Fermont | 63623 | Analytical grade (Used in cultures inside the laboratory) |
Paddle wheel | GSI | Made under previous design | |
pH sensor | Van London pHoenix | 715-772-0041 | |
Portable screen | Rasspberry | Pi 3 B+ | |
Recirculation centrifugal pump (1.5 HP) | Aquapak | ALY 15 | |
Sodium bicarbonate | Industria del alcali | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium bicarbonate | Fermont | 12903 | Analytical grade (Used in cultures inside the laboratory) |
Sodium chloride | Sal Colima | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium chloride | Fermont | 24912 | Analytical grade (Used in cultures inside the laboratory) |
Sodium nitrate | Vitraquim | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium nitrate | Fermont | 41903 | Analytical grade (Used in cultures inside the laboratory) |
Storing program (pH, DO) | Python Software Foundation | Python IDLE 2.7 | |
Tedlar bags | SKC Inc. | 232-25 | |
Temperature recorder | T&D | TR-52i | |
UV-Vis Spectrophotometer | ThermoFisher Scientific instrument | GENESYS 10S | |
Vacuum pump | EVAR | EV-40 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten