Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
La pollution de l’air a un impact sur la qualité de vie de tous les organismes. Nous décrivons ici l’utilisation de la biotechnologie des microalgues pour le traitement du biogaz (élimination simultanée du dioxyde de carbone et du sulfure d’hydrogène) et la production de biométhane par le biais de bassins d’algues semi-industriels ouverts à haut débit et l’analyse ultérieure de l’efficacité du traitement, du pH, de l’oxygène dissous et de la croissance des microalgues.
Ces dernières années, un certain nombre de technologies ont vu le jour pour purifier le biogaz en biométhane. Cette épuration implique une réduction de la concentration de gaz polluants tels que le dioxyde de carbone et le sulfure d’hydrogène afin d’augmenter la teneur en méthane. Dans cette étude, nous avons utilisé une technologie de culture de microalgues pour traiter et purifier le biogaz produit à partir de déchets organiques de l’industrie porcine afin d’obtenir du biométhane prêt à l’emploi. Pour la culture et l’épuration, deux photobioréacteurs à bassin ouvert de 22,2m3 couplés à un système de colonne d’absorption-désorption ont été mis en place à San Juan de los Lagos, au Mexique. Plusieurs rapports liquide/biogaz de recirculation (L/G) ont été testés pour obtenir les meilleures efficacités d’élimination ; d’autres paramètres, tels que le pH, l’oxygène dissous (OD), la température et la croissance de la biomasse, ont été mesurés. Les L/G les plus efficaces étaient de 1,6 et 2,5, ce qui a permis d’obtenir un effluent de biogaz traité avec une composition de 6,8 % vol et 6,6 % vol en CO2, respectivement, et des efficacités d’élimination pour H2S allant jusqu’à 98,9 %, ainsi que le maintien de valeurs de contamination en O2 inférieures à 2 % vol. Nous avons constaté que le pH détermine grandement l’élimination du CO2 , plus que le L/G, pendant la culture en raison de sa participation au processus photosynthétique des microalgues et de sa capacité à faire varier le pH lorsqu’il est solubilisé en raison de sa nature acide. L’oxygène dissous et la température ont oscillé comme prévu à partir des cycles naturels lumière-obscurité de la photosynthèse et de l’heure de la journée, respectivement. La croissance de la biomasse a varié en fonction de l’alimentation en CO2 et en nutriments ainsi que de la récolte dans le réacteur ; Cependant, la tendance est demeurée propice à la croissance.
Ces dernières années, plusieurs technologies ont vu le jour pour purifier le biogaz en biométhane, favorisant ainsi son utilisation en tant que combustible non fossile, atténuant ainsi les émissions de méthane non désaérosables1. La pollution de l’air est un problème qui touche la majeure partie de la population mondiale, en particulier dans les zones urbanisées ; En fin de compte, environ 92 % de la population mondiale respire de l’air pollué2. En Amérique latine, les taux de pollution de l’air sont principalement générés par l’utilisation de carburants, alors qu’en 2014, 48 % de la pollution de l’air était provoquée pa....
1. Configuration du système
REMARQUE : Un schéma de tuyauterie et d’instrumentation (P&ID) du système décrit dans ce protocole est illustré à la figure 2.
Conformément au protocole, le système a été construit, testé et inoculé. Les conditions ont été mesurées et stockées, et les échantillons ont été prélevés et analysés. Le protocole a été réalisé pendant un an, à partir d’octobre 2019 et jusqu’en octobre 2020. Il est important de mentionner qu’à partir de maintenant, les HRAP seront appelés RT3 et RT4.
Productivité du biométhane
Afin de déterminer les conditions qui favorisent l’élimination.......
Au fil des ans, cette technologie algale a été testée et utilisée comme alternative aux techniques physico-chimiques difficiles et coûteuses pour purifier le biogaz. En particulier, le genre Arthrospira est largement utilisé à cette fin spécifique, avec Chlorella. Cependant, il existe peu de méthodologies à l’échelle semi-industrielle, ce qui ajoute de la valeur à cette procédure.
Il est essentiel de maintenir des concentrationsd’O2 plus faibles en.......
Conflit d’intérêts. Les auteurs déclarent qu’ils n’ont aucun conflit d’intérêts.
Nous remercions la DGAPA du projet UNAM numéro IT100423 pour le financement partiel. Nous remercions également PROAN et GSI de nous avoir permis de partager nos expériences techniques sur leurs installations complètes de valorisation du biogaz photosynthétique. Le soutien technique de Pedro Pastor Hernández Guerrero, Carlos Martin Sigala, Juan Francisco Díaz Márquez, Margarita Elizabeth Cisneros Ortiz, Roberto Sotero Briones Méndez et Daniel de los Cobos Vasconcelos est très apprécié. Une partie de cette recherche a été réalisée au laboratoire d’ingénierie environnementale de l’IIUNAM avec un certificat ISO 9001 :2015.
....Name | Company | Catalog Number | Comments |
1" rotameter | CICLOTEC | N/A | |
1" rotameter | GPI | A10-LMA100IA1 | |
Absorption tank | EFISA | Made under previous design | |
Air blower (2.35 HP) | Elmo Rietschle | 2BH11007AH01 | |
Biogas blower (2 HP) | Elmo Rietschle | 2BH11007AH01 | |
Biogas composition measure | Geotech | BIOGAS 5000 | |
Data-acquisition device | LabJack Co. | U3-LV | |
Diffuser tubes | Aero-Tube | C3060AR | |
DO sensor | Applisens | Z10023525 | |
Dodecahydrated trisodium phosphate | Quimica PIMA | N/A | Fertilizer grade (greenhouse and experior use) |
Dodecahydrated trisodium phosphate | Fermont | 35963 | Analytical grade (Used in cultures inside the laboratory) |
Durapore membrane (45 µm) | MerckMillipore | HVLP04700 | |
Electric motor 1.5 HP | Weg | 00158ET3ERS56C | |
Ferrous sulfate heptahydrate | Agroquimica Samet | N/A | Fertilizer grade (greenhouse and experior use) |
Ferrous sulfate heptahydrate | Fermont | 63593 | Analytical grade (Used in cultures inside the laboratory) |
Geomembrane | GEOSINCERE | N/A | |
Magnesium sulfate heptahydrate | Tepeyac | N/A | Fertilizer grade (greenhouse and experior use) |
Magnesium sulfate heptahydrate | Fermont | 63623 | Analytical grade (Used in cultures inside the laboratory) |
Paddle wheel | GSI | Made under previous design | |
pH sensor | Van London pHoenix | 715-772-0041 | |
Portable screen | Rasspberry | Pi 3 B+ | |
Recirculation centrifugal pump (1.5 HP) | Aquapak | ALY 15 | |
Sodium bicarbonate | Industria del alcali | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium bicarbonate | Fermont | 12903 | Analytical grade (Used in cultures inside the laboratory) |
Sodium chloride | Sal Colima | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium chloride | Fermont | 24912 | Analytical grade (Used in cultures inside the laboratory) |
Sodium nitrate | Vitraquim | N/A | Fertilizer grade (greenhouse and experior use) |
Sodium nitrate | Fermont | 41903 | Analytical grade (Used in cultures inside the laboratory) |
Storing program (pH, DO) | Python Software Foundation | Python IDLE 2.7 | |
Tedlar bags | SKC Inc. | 232-25 | |
Temperature recorder | T&D | TR-52i | |
UV-Vis Spectrophotometer | ThermoFisher Scientific instrument | GENESYS 10S | |
Vacuum pump | EVAR | EV-40 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon