Iniciar sesión

University of California at Los Angeles

6 ARTICLES PUBLISHED IN JoVE

image

Biology

Microwave-assisted One-pot Synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB)
Shuang Hou *1,2,3, Duy Linh Phung *1,2,3, Wei-Yu Lin 1,2,3, Ming-wei Wang 4, Kan Liu 5, Clifton Kwang-Fu Shen 1,2,3
1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, 2Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California at Los Angeles, 3California NanoSystems Institute, University of California at Los Angeles, 4Nuclear Medicine, PET Center, Shanghai Medical Collegea, Fudan University, 5Electronics and Information Engineering, College of Electronics and Information Engineering, Wuhan Textile University

A facile, one-pot synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) was developed based on a non-aqueous, three-step radiochemical process. Using microwave heating, the entire procedure can be completed in less than 30 min, or 60 min with further purification by preparative HPLC. The decay-corrected radiochemical yields (RCYs) were 35-5% (n > 30).

image

JoVE Journal

Use of Human Perivascular Stem Cells for Bone Regeneration
Aaron W. James *1, Janette N. Zara *2, Mirko Corselli 2, Michael Chiang 1, Wei Yuan 2, Virginia Nguyen 1, Asal Askarinam 1, Raghav Goyal 1, Ronald K. Siu 3, Victoria Scott 1, Min Lee 3, Kang Ting 1, Bruno Péault 2,4, Chia Soo 2
1Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, 2UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, 3Department of Bioengineering, UCLA, 4Center for Cardiovascular Science, University of Edinburgh

Human perivascular stem cells (PSCs) are a novel stem cell class for skeletal tissue regeneration similar to mesenchymal stem cells (MSCs). PSCs can be isolated by FACS (fluorescence activated cell sorting) from adipose tissue procured during standard liposuction procedures, then combined with an osteoinductive scaffold to achieve bone formation in vivo.

image

Biology

Isolation of Blood-vessel-derived Multipotent Precursors from Human Skeletal Muscle
William C.W. Chen 1, Arman Saparov 2,3, Mirko Corselli 4, Mihaela Crisan 5, Bo Zheng 6, Bruno Péault 7,8, Johnny Huard 9
1Stem Cell Research Center, Department of Bioengineering and Orthopedic Surgery, University of Pittsburgh, 2Department of Orthopedic Surgery, University of Pittsburgh, 3Nazarbayev University Research and Innovation System, Nazarbayev University, 4Department of Orthopaedic Surgery, UCLA Orthopaedic Hospital and the Orthopaedic Hospital Research Center, University of California at Los Angeles, 5Department of Cell Biology, Erasmus MC Stem Cell Institute, 6OHSU Center for Regenerative Medicine, Oregon Health & Science University, 7Centre for Cardiovascular Science and MRC Centre for Regenerative Medicine, Queen's Medical Research Institute and University of Edinburgh, 8David Geffen School of Medicine and the Orthopaedic Hospital Research Center, University of California at Los Angeles, 9Stem Cell Research Center, Department of Orthopedic Surgery and McGowan Institute for Regenerative Medicine, University of Pittsburgh

Blood vessels within human skeletal muscle harbor several multi-lineage precursor populations that are ideal for regenerative applications. This isolation method allows simultaneous purification of three multipotent precursor cell populations respectively from three structural layers of blood vessels: myogenic endothelial cells from intima, pericytes from media, and adventitial cells from adventitia.

image

Developmental Biology

Isolation of Perivascular Multipotent Precursor Cell Populations from Human Cardiac Tissue
James E. Baily 1, William C.W. Chen 2,3, Nusrat Khan 4, Iain R. Murray 4, Zaniah N. González Galofre 4, Johnny Huard 5,6, Bruno Péault 4,7
1Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 2Department of Bioengineering and Orthopaedic Surgery, University of Pittsburgh, 3Research Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, 4MRC Centre for Regenerative Medicine, University of Edinburgh, 5Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 6Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, 7Department of Orthopaedic Surgery, UCLA Orthopaedic Hospital, David Geffen School of Medicine, University of California at Los Angeles

Human cardiac tissue harbours multipotent perivascular precursor cell populations that may be suitable for myocardial regeneration. The technique described here allows for the simultaneous isolation and purification of two multipotent stromal cell populations associated with native blood vessels, i.e. CD146+CD34- pericytes and CD34+CD146- adventitial cells, from the human myocardium.

image

Immunology and Infection

A Method for Targeted 16S Sequencing of Human Milk Samples
Nicole H. Tobin 1, Cora Woodward 1, Sara Zabih 1, David J. Lee 1, Fan Li 1, Grace M. Aldrovandi 1
1Department of Pediatrics, University of California at Los Angeles

A semi-automated workflow is presented for targeted sequencing of 16S rRNA from human milk and other low-biomass sample types.

image

Biology

Human Adipose Tissue Micro-fragmentation for Cell Phenotyping and Secretome Characterization
Bianca Vezzani 1,2, Mario Gomez-Salazar 1, Joan Casamitjana 1, Carlo Tremolada 3, Bruno Péault 1,4
1MRC Center for Regenerative Medicine, University of Edinburgh, 2Dept. of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 3Italian Image Institute, 4Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California

Here, we present human adipose tissue enzyme-free micro-fragmentation using a closed system device. This new method allows the obtainment of sub-millimeter clusters of adipose tissue suitable for in vivo transplantation, in vitro culture, and further cell isolation and characterization.

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados