Iniciar sesión

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tags

Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Del capítulo 1:

article

Now Playing

1.3 : Electron Configurations

Enlace covalente y estructura

16.0K Vistas

article

1.1 : ¿Qué es la química orgánica?

Enlace covalente y estructura

68.3K Vistas

article

1.2 : Estructura electrónica de los átomos

Enlace covalente y estructura

20.7K Vistas

article

1.4 : Enlaces químicos

Enlace covalente y estructura

15.5K Vistas

article

1.5 : Enlaces covalentes polares

Enlace covalente y estructura

18.4K Vistas

article

1.6 : Las Estructuras de Lewis y Las Cargas Formales

Enlace covalente y estructura

13.7K Vistas

article

1.7 : Teoría RPECV

Enlace covalente y estructura

8.6K Vistas

article

1.8 : Geometría molecular y Momentos dipolo

Enlace covalente y estructura

12.3K Vistas

article

1.9 : Resonancia y Estructuras Híbridas

Enlace covalente y estructura

16.1K Vistas

article

1.10 : Teoría del enlace de valencia y los orbitales híbridos

Enlace covalente y estructura

18.4K Vistas

article

1.11 : Teoría MO y Enlaces Covalentes

Enlace covalente y estructura

10.1K Vistas

article

1.12 : Fuerzas Intermoleculares y Propiedades Físicas

Enlace covalente y estructura

20.1K Vistas

article

1.13 : Solubilidad

Enlace covalente y estructura

17.1K Vistas

article

1.14 : Introducción a los grupos funcionales

Enlace covalente y estructura

24.7K Vistas

article

1.15 : Visión general de los Grupos Funcionales Avanzados

Enlace covalente y estructura

22.6K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados