Zaloguj się

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tagi

Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Z rozdziału 1:

article

Now Playing

1.3 : Electron Configurations

Covalent Bonding and Structure

15.9K Wyświetleń

article

1.1 : Co to jest chemia organiczna?

Covalent Bonding and Structure

67.1K Wyświetleń

article

1.2 : Struktura elektronowa atomów

Covalent Bonding and Structure

20.6K Wyświetleń

article

1.4 : Wiązania chemiczne

Covalent Bonding and Structure

15.4K Wyświetleń

article

1.5 : Polarne wiązania kowalencyjne

Covalent Bonding and Structure

18.3K Wyświetleń

article

1.6 : Struktury Lewisa i opłaty formalne

Covalent Bonding and Structure

13.6K Wyświetleń

article

1.7 : Teoria VSEPR

Covalent Bonding and Structure

8.6K Wyświetleń

article

1.8 : Geometria molekularna i momenty dipolowe

Covalent Bonding and Structure

12.2K Wyświetleń

article

1.9 : Rezonans i struktury hybrydowe

Covalent Bonding and Structure

16.1K Wyświetleń

article

1.10 : Teoria wiązań walencyjnych i hybrydyzowane orbitale

Covalent Bonding and Structure

18.4K Wyświetleń

article

1.11 : Teoria MO i wiązanie kowalencyjne

Covalent Bonding and Structure

10.1K Wyświetleń

article

1.12 : Siły międzycząsteczkowe i właściwości fizyczne

Covalent Bonding and Structure

20.1K Wyświetleń

article

1.13 : Rozpuszczalność

Covalent Bonding and Structure

17.0K Wyświetleń

article

1.14 : Wprowadzenie do grup funkcyjnych

Covalent Bonding and Structure

24.7K Wyświetleń

article

1.15 : Przegląd zaawansowanych grup funkcjonalnych

Covalent Bonding and Structure

22.6K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone