Oturum Aç

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Etiketler
Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Bölümden 1:

article

Now Playing

1.3 : Electron Configurations

Kovalent Bağ ve Yapısı

15.9K Görüntüleme Sayısı

article

1.1 : Organik Kimya Nedir?

Kovalent Bağ ve Yapısı

66.3K Görüntüleme Sayısı

article

1.2 : Atomların Elektronik Yapısı

Kovalent Bağ ve Yapısı

20.6K Görüntüleme Sayısı

article

1.4 : Kimyasal Bağlar

Kovalent Bağ ve Yapısı

15.3K Görüntüleme Sayısı

article

1.5 : Polar Kovalent Bağlar

Kovalent Bağ ve Yapısı

18.2K Görüntüleme Sayısı

article

1.6 : Lewis Yapıları ve Resmi Yükler

Kovalent Bağ ve Yapısı

13.6K Görüntüleme Sayısı

article

1.7 : VSEPR Teorisi

Kovalent Bağ ve Yapısı

8.6K Görüntüleme Sayısı

article

1.8 : Moleküler Geometri ve Dipol Momentleri

Kovalent Bağ ve Yapısı

12.2K Görüntüleme Sayısı

article

1.9 : Rezonans ve Hibrit Yapılar

Kovalent Bağ ve Yapısı

16.0K Görüntüleme Sayısı

article

1.10 : Değerlik Bağ Teorisi ve Hibritleştirilmiş Orbitaller

Kovalent Bağ ve Yapısı

18.3K Görüntüleme Sayısı

article

1.11 : MO Teorisi ve Kovalent Bağlar

Kovalent Bağ ve Yapısı

10.1K Görüntüleme Sayısı

article

1.12 : Moleküller Arası Kuvvetler ve Fiziksel Özellikler

Kovalent Bağ ve Yapısı

20.1K Görüntüleme Sayısı

article

1.13 : Çözünürlük

Kovalent Bağ ve Yapısı

17.0K Görüntüleme Sayısı

article

1.14 : Fonksiyonel Gruplara Giriş

Kovalent Bağ ve Yapısı

24.6K Görüntüleme Sayısı

article

1.15 : Gelişmiş İşlevsel Gruplara Genel Bakış

Kovalent Bağ ve Yapısı

22.5K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır