Anmelden

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tags

Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

Aus Kapitel 1:

article

Now Playing

1.3 : Electron Configurations

Kovalente Bindung und Struktur

15.9K Ansichten

article

1.1 : Was ist Organische Chemie?

Kovalente Bindung und Struktur

66.8K Ansichten

article

1.2 : Elektronische Struktur von Atomen

Kovalente Bindung und Struktur

20.6K Ansichten

article

1.4 : Chemische Bindungen

Kovalente Bindung und Struktur

15.3K Ansichten

article

1.5 : Polare kovalente Bindungen

Kovalente Bindung und Struktur

18.3K Ansichten

article

1.6 : Lewis-Strukturen und formelle Anklagen

Kovalente Bindung und Struktur

13.6K Ansichten

article

1.7 : VSEPR-Theorie

Kovalente Bindung und Struktur

8.6K Ansichten

article

1.8 : Molekulare Geometrie und Dipolmomente

Kovalente Bindung und Struktur

12.2K Ansichten

article

1.9 : Resonanz und hybride Strukturen

Kovalente Bindung und Struktur

16.1K Ansichten

article

1.10 : Valenzbindungstheorie und hybridisierte Orbitale

Kovalente Bindung und Struktur

18.3K Ansichten

article

1.11 : MO-Theorie und kovalente Bindung

Kovalente Bindung und Struktur

10.1K Ansichten

article

1.12 : Intermolekulare Kräfte und physikalische Eigenschaften

Kovalente Bindung und Struktur

20.1K Ansichten

article

1.13 : Löslichkeit

Kovalente Bindung und Struktur

17.0K Ansichten

article

1.14 : Einführung in Funktionsgruppen

Kovalente Bindung und Struktur

24.7K Ansichten

article

1.15 : Übersicht über erweiterte Funktionsgruppen

Kovalente Bindung und Struktur

22.5K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten