Iniciar sesión

The molecular orbital theory describes the distribution of electrons in molecules in a manner similar to the distribution of electrons in atomic orbitals. The region of space in which a valence electron in a molecule is likely to be found is called a molecular orbital. Mathematically, the linear combination of atomic orbitals (LCAO) generates molecular orbitals. Combinations of in-phase atomic orbital wave functions result in regions with a high probability of electron density, while out-of-phase waves produce nodes or regions of no electron density.

The in-phase combination of two atomic s orbitals on adjacent atoms produces a lower energy σs bonding molecular orbital in which most of the electron density is directly between the nuclei. The out-of-phase addition produces a higher energy σs* antibonding molecular orbital, in which there is a node between the nuclei.

Similarly, the wave function of p orbitals gives rise to two lobes with opposite phases. When p orbitals overlap end to end, they create σ and σ* orbitals. The side-by-side overlap of two p orbitals generates π bonding and π* antibonding molecular orbitals.

The filled molecular orbital diagram shows the number of electrons in bonding and antibonding molecular orbitals. An electron contributes to a bonding interaction only if it occupies a bonding orbital. The net contribution of the electrons to the bond strength of a molecule is determined from the bond order, which is calculated as follows:

Figure1

The bond order is a guide to the strength of a covalent bond; a bond between two given atoms becomes stronger as the bond order increases. If the distribution of electrons in the molecular orbitals yields a bond order of zero, a stable bond does not form.

The molecular orbital theory is also useful for polyatomic molecules. The Lewis model of benzene (C6H6), which has a planar hexagonal structure with sp2 hybridized carbon atoms, cannot accurately represent its delocalized electrons. However, the molecular orbital theory assigns those electrons to three π bonding molecular orbitals covering the entire carbon ring. This results in a fully occupied (6 electrons) set of bonding molecular orbitals that endow the benzene ring with additional thermodynamic and chemical stability.

Tags

MO TheoryCovalent BondingMolecular OrbitalValence ElectronLCAOAtomic OrbitalsElectron DensityBonding Molecular OrbitalAntibonding Molecular OrbitalP OrbitalsOverlapBonding OrbitalAntibonding OrbitalMolecular Orbital DiagramBond StrengthBond Order

Del capítulo 1:

article

Now Playing

1.11 : MO Theory and Covalent Bonding

Enlace covalente y estructura

10.1K Vistas

article

1.1 : ¿Qué es la química orgánica?

Enlace covalente y estructura

67.8K Vistas

article

1.2 : Estructura electrónica de los átomos

Enlace covalente y estructura

20.7K Vistas

article

1.3 : Configuraciones electrónicas

Enlace covalente y estructura

16.0K Vistas

article

1.4 : Enlaces químicos

Enlace covalente y estructura

15.4K Vistas

article

1.5 : Enlaces covalentes polares

Enlace covalente y estructura

18.3K Vistas

article

1.6 : Las Estructuras de Lewis y Las Cargas Formales

Enlace covalente y estructura

13.7K Vistas

article

1.7 : Teoría RPECV

Enlace covalente y estructura

8.6K Vistas

article

1.8 : Geometría molecular y Momentos dipolo

Enlace covalente y estructura

12.3K Vistas

article

1.9 : Resonancia y Estructuras Híbridas

Enlace covalente y estructura

16.1K Vistas

article

1.10 : Teoría del enlace de valencia y los orbitales híbridos

Enlace covalente y estructura

18.4K Vistas

article

1.12 : Fuerzas Intermoleculares y Propiedades Físicas

Enlace covalente y estructura

20.1K Vistas

article

1.13 : Solubilidad

Enlace covalente y estructura

17.1K Vistas

article

1.14 : Introducción a los grupos funcionales

Enlace covalente y estructura

24.7K Vistas

article

1.15 : Visión general de los Grupos Funcionales Avanzados

Enlace covalente y estructura

22.6K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados