JoVE Logo

Iniciar sesión

Chemical reactions often occur in a stepwise fashion involving two or more distinct reactions taking place in a sequence. A balanced equation indicates the reacting species and the product species, but it reveals no details about how the reaction occurs at the molecular level. The reaction mechanism (or reaction path) provides details regarding the precise, step-by-step process by which a reaction occurs. Each of the steps in a reaction mechanism is called an elementary reaction. These elementary reactions occur in sequence, as represented in the step equations, and they sum to yield the balanced chemical equation describing the overall reaction. In a multistep reaction mechanism, one of the elementary steps progresses slower than the others — sometimes significantly slower. This slowest step is called the rate-limiting step (or rate-determining step). A reaction cannot proceed faster than its slowest step, and hence, the rate-determining step limits the overall reaction rate.

Unlike balanced equations representing an overall reaction, the equations for elementary reactions are explicit representations of the chemical change. An elementary reaction equation depicts the actual reactant(s) undergoing bond-breaking/making and the product(s) formed. Rate laws may be derived directly from the balanced chemical equations for elementary reactions. However, this is not the case for most chemical reactions, where balanced equations often represent the overall change in the chemical system resulting from multistep reaction mechanisms. Therefore, the rate law must be determined from experimental data, and the reaction mechanism must be subsequently deduced from the rate law.

For instance, consider the reaction of NO2 and CO:

Figure1

The experimental rate law for this reaction at temperatures above 225 °C is:

Figure2

According to the rate law, the reaction is first-order with respect to NO2 and first-order with respect to CO. However, at temperatures below 225 °C, the reaction is described by a different rate law that is second-order with respect to NO2:

Figure3

This rate law is not consistent with the single-step mechanism, but it is consistent with the following two-step mechanism:

Figure4

Figure5

The rate-determining (slower) step gives a rate law showing second-order dependence on the NO2 concentration, and the sum of the two elementary equations gives the net overall reaction.

In general, when the rate-determining (slower) step is the first step in the reaction mechanism, the rate law for the overall reaction is the same as the rate law for this step. However, when the rate-determining step is preceded by an elementary step involving a rapidly reversible reaction, the rate law for the overall reaction may be more difficult to derive, often due to the presence of reaction intermediates.

In such instances, the concept that a reversible reaction is at equilibrium when the rates of the forward and reverse processes are equal can be utilized.

Tags

Multi step ReactionsChemical ReactionsReaction MechanismElementary ReactionBalanced EquationRate limiting StepRate determining StepOverall Reaction RateExplicit RepresentationBond breaking makingProduct FormationRate Laws

Del capítulo 2:

article

Now Playing

2.9 : Multi-Step Reactions

Termodinámica y cinética química

7.2K Vistas

article

2.1 : Reacciones Químicas

Termodinámica y cinética química

9.7K Vistas

article

2.2 : Entalpía y Calor de Reacción

Termodinámica y cinética química

8.2K Vistas

article

2.3 : Energética de la formación de soluciones

Termodinámica y cinética química

6.7K Vistas

article

2.4 : Entropía y Solvatación

Termodinámica y cinética química

6.9K Vistas

article

2.5 : Energía libre de Gibbs y Favorabilidad termodinámica

Termodinámica y cinética química

6.6K Vistas

article

2.6 : Equilibrio químico y de solubilidad

Termodinámica y cinética química

4.0K Vistas

article

2.7 : Ley de velocidad y Orden de reacción

Termodinámica y cinética química

9.1K Vistas

article

2.8 : Efecto del cambio de temperatura en la velocidad de la reacción

Termodinámica y cinética química

3.9K Vistas

article

2.10 : Energía de disociación de enlace y energía de activación

Termodinámica y cinética química

8.3K Vistas

article

2.11 : Diagramas de energía, Estados de transición e Intermediarios

Termodinámica y cinética química

15.6K Vistas

article

2.12 : Predicción del rendimiento de una reacción

Termodinámica y cinética química

7.8K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados