Iniciar sesión

Energy production within a cell involves many coordinated chemical pathways. Most of these pathways are combinations of oxidation and reduction reactions, which occur at the same time. An oxidation reaction strips an electron from an atom in a compound, and the addition of this electron to another compound is a reduction reaction. Because oxidation and reduction usually occur together, these pairs of reactions are called redox reactions.

The removal of an electron from a molecule, results in a decrease in potential energy in the oxidized compound. However, the electron (sometimes as part of a hydrogen atom) does not remain unbonded in the cytoplasm of a cell. Rather, the electron is shifted to a second compound, reducing the second compound. The shift of an electron from one compound to another removes some potential energy from the first compound (the oxidized compound) and increases the potential energy of the second compound (the reduced compound). The transfer of electrons between molecules is important because most of the energy stored in atoms and used to fuel cell functions is in the form of high-energy electrons. The transfer of energy in the form of high-energy electrons allows the cell to transfer and use energy in an incremental fashion—in small packages rather than in a single, destructive burst.

In living systems, a small class of compounds functions as electron shuttles: they bind and carry high-energy electrons between compounds in biochemical pathways. The principal electron carriers we will consider are derived from the B vitamin group and are derivatives of nucleotides. These compounds can be easily reduced (that is, they accept electrons) or oxidized (they lose electrons). Nicotinamide adenine dinucleotide (NAD) is derived from vitamin B3, niacin. NAD+ is the oxidized form of the molecule; NADH is the reduced form of the molecule after it has accepted two electrons and a proton (which together are the equivalent of a hydrogen atom with an extra electron).

This text is adapted from Openstax, Biology 2e, Section 7.1 Energy in Living Systems

Tags
OxidationReductionRedox ReactionsElectron TransferEnergy ProductionNADNADHOxidizedReducedElectron CarriersBiochemical Pathways

Del capítulo 3:

article

Now Playing

3.10 : Oxidación y reducción de moléculas orgánicas

Energía y catálisis

5.6K Vistas

article

3.1 : La primera ley de la termodinámica

Energía y catálisis

5.2K Vistas

article

3.2 : La segunda ley de la termodinámica

Energía y catálisis

4.8K Vistas

article

3.3 : Entalpía en el interior de la célula

Energía y catálisis

5.5K Vistas

article

3.4 : Entropía en el interior de la célula

Energía y catálisis

10.1K Vistas

article

3.5 : Una introducción a la energía libre

Energía y catálisis

7.9K Vistas

article

3.6 : Reacciones endergónicas y exergónicas en la célula

Energía y catálisis

13.9K Vistas

article

3.7 : La constante de unión de equilibrio y la fuerza de unión

Energía y catálisis

8.9K Vistas

article

3.8 : Energía libre y equilibrio

Energía y catálisis

5.9K Vistas

article

3.9 : Célula fuera del equilibrio

Energía y catálisis

4.0K Vistas

article

3.11 : Introducción a las enzimas

Energía y catálisis

16.4K Vistas

article

3.12 : Enzimas y energía de activación

Energía y catálisis

11.1K Vistas

article

3.13 : Introducción a la cinética enzimática

Energía y catálisis

19.2K Vistas

article

3.14 : Número de recambio y eficacia catalítica

Energía y catálisis

9.6K Vistas

article

3.15 : Enzimas catalíticamente perfectas

Energía y catálisis

3.8K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados