Entrar

Energy production within a cell involves many coordinated chemical pathways. Most of these pathways are combinations of oxidation and reduction reactions, which occur at the same time. An oxidation reaction strips an electron from an atom in a compound, and the addition of this electron to another compound is a reduction reaction. Because oxidation and reduction usually occur together, these pairs of reactions are called redox reactions.

The removal of an electron from a molecule, results in a decrease in potential energy in the oxidized compound. However, the electron (sometimes as part of a hydrogen atom) does not remain unbonded in the cytoplasm of a cell. Rather, the electron is shifted to a second compound, reducing the second compound. The shift of an electron from one compound to another removes some potential energy from the first compound (the oxidized compound) and increases the potential energy of the second compound (the reduced compound). The transfer of electrons between molecules is important because most of the energy stored in atoms and used to fuel cell functions is in the form of high-energy electrons. The transfer of energy in the form of high-energy electrons allows the cell to transfer and use energy in an incremental fashion—in small packages rather than in a single, destructive burst.

In living systems, a small class of compounds functions as electron shuttles: they bind and carry high-energy electrons between compounds in biochemical pathways. The principal electron carriers we will consider are derived from the B vitamin group and are derivatives of nucleotides. These compounds can be easily reduced (that is, they accept electrons) or oxidized (they lose electrons). Nicotinamide adenine dinucleotide (NAD) is derived from vitamin B3, niacin. NAD+ is the oxidized form of the molecule; NADH is the reduced form of the molecule after it has accepted two electrons and a proton (which together are the equivalent of a hydrogen atom with an extra electron).

This text is adapted from Openstax, Biology 2e, Section 7.1 Energy in Living Systems

Tags
OxidationReductionRedox ReactionsElectron TransferEnergy ProductionNADNADHOxidizedReducedElectron CarriersBiochemical Pathways

Do Capítulo 3:

article

Now Playing

3.10 : Oxidação e Redução de Moléculas Orgânicas

Energia e Catálise

5.6K Visualizações

article

3.1 : A Primeira Lei da Termodinâmica

Energia e Catálise

5.2K Visualizações

article

3.2 : A Segunda Lei da Termodinâmica

Energia e Catálise

4.8K Visualizações

article

3.3 : Entalpia Dentro da Célula

Energia e Catálise

5.5K Visualizações

article

3.4 : Entropia Dentro da Célula

Energia e Catálise

10.1K Visualizações

article

3.5 : Uma Introdução à Energia Livre

Energia e Catálise

7.9K Visualizações

article

3.6 : Reações Endergônicas e Exergônicas na Célula

Energia e Catálise

13.9K Visualizações

article

3.7 : A Constante de Ligação de Equilíbrio e a Força de Ligação

Energia e Catálise

8.9K Visualizações

article

3.8 : Energia Livre e Equilíbrio

Energia e Catálise

5.9K Visualizações

article

3.9 : Desequilíbrio na Célula

Energia e Catálise

4.0K Visualizações

article

3.11 : Introdução às Enzimas

Energia e Catálise

16.4K Visualizações

article

3.12 : Enzimas e Energia de Ativação

Energia e Catálise

11.1K Visualizações

article

3.13 : Introdução à Cinética Enzimática

Energia e Catálise

19.2K Visualizações

article

3.14 : Número de Renovação e Eficiência Catalítica

Energia e Catálise

9.6K Visualizações

article

3.15 : Enzimas Cataliticamente Perfeitas

Energia e Catálise

3.8K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados