Iniciar sesión

Mathematically, the motion of a wave can be studied using a wavefunction. Consider a string oscillating up and down in simple harmonic motion, having a period T. The wave on the string is sinusoidal and is translated in the positive x-direction as time progresses. Sine is a function of the angle θ, oscillating between +A and −A and repeating every 2π radians. To construct a wave model, the ratio of the angle θ and the position x is considered.

Figure1

From the ratio, using the value of θ, and multiplying the sine function with amplitude A, we can model the y-position of the string as a function of position x.

Figure2

The wave on the string travels with a constant velocity and moves a distance equal to vt in time t, so we can modify the wave function using this. Further, multiplying by the term 2π/λ simplifies the equation.

Figure3

Recall the expressions for wave number and angular frequency, which modify the first and second terms of the above equation, respectively. Hence the reduced expression for the wavefunction of a simple harmonic wave on a string is obtained.

Figure4

An angle φ that corresponds to the initial phase of the wave is added to the wave function. It is an indicator of the initial position of the particle just before the start of wave motion and is used to determine various wave parameters.

This text is adapted from Openstax, University Physics Volume 1, Section 16.2: Mathematics of Waves.

Tags
Wave MotionWavefunctionSimple Harmonic MotionSinusoidal WaveAmplitudeWave ModelPosition XWave VelocityWave NumberAngular FrequencyInitial PhaseWave Parameters

Del capítulo 16:

article

Now Playing

16.3 : Ecuaciones del movimiento de onda

Ondas

4.0K Vistas

article

16.1 : Ondas viajeras

Ondas

4.9K Vistas

article

16.2 : Parámetros de onda

Ondas

5.7K Vistas

article

16.4 : Representación gráfica de la función de onda

Ondas

1.5K Vistas

article

16.5 : Velocidad y aceleración de una onda

Ondas

3.7K Vistas

article

16.6 : Velocidad de una onda transversal

Ondas

1.4K Vistas

article

16.7 : Resolución de problemas: afinación de una cuerda de guitarra

Ondas

362 Vistas

article

16.8 : Energía cinética y potencial de una onda

Ondas

3.4K Vistas

article

16.9 : Energía y potencia de una onda

Ondas

3.3K Vistas

article

16.10 : Interferencia y superposición de ondas

Ondas

4.6K Vistas

article

16.11 : Reflexión de ondas

Ondas

3.6K Vistas

article

16.12 : Propagación de ondas

Ondas

2.2K Vistas

article

16.13 : Olas estacionarias

Ondas

2.9K Vistas

article

16.14 : Modos de ondas estacionarias - I

Ondas

2.8K Vistas

article

16.15 : Modos de ondas estacionarias: II

Ondas

779 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados