S'identifier

Mathematically, the motion of a wave can be studied using a wavefunction. Consider a string oscillating up and down in simple harmonic motion, having a period T. The wave on the string is sinusoidal and is translated in the positive x-direction as time progresses. Sine is a function of the angle θ, oscillating between +A and −A and repeating every 2π radians. To construct a wave model, the ratio of the angle θ and the position x is considered.

Figure1

From the ratio, using the value of θ, and multiplying the sine function with amplitude A, we can model the y-position of the string as a function of position x.

Figure2

The wave on the string travels with a constant velocity and moves a distance equal to vt in time t, so we can modify the wave function using this. Further, multiplying by the term 2π/λ simplifies the equation.

Figure3

Recall the expressions for wave number and angular frequency, which modify the first and second terms of the above equation, respectively. Hence the reduced expression for the wavefunction of a simple harmonic wave on a string is obtained.

Figure4

An angle φ that corresponds to the initial phase of the wave is added to the wave function. It is an indicator of the initial position of the particle just before the start of wave motion and is used to determine various wave parameters.

This text is adapted from Openstax, University Physics Volume 1, Section 16.2: Mathematics of Waves.

Tags
Wave MotionWavefunctionSimple Harmonic MotionSinusoidal WaveAmplitudeWave ModelPosition XWave VelocityWave NumberAngular FrequencyInitial PhaseWave Parameters

Du chapitre 16:

article

Now Playing

16.3 : Equations of Wave Motion

Ondes

4.0K Vues

article

16.1 : Ondes progressives

Ondes

4.9K Vues

article

16.2 : Paramètres des ondes

Ondes

5.7K Vues

article

16.4 : Représentation graphique de la fonction d’onde

Ondes

1.5K Vues

article

16.5 : Vitesse et accélération d'une onde

Ondes

3.7K Vues

article

16.6 : Vitesse d’une onde transversale

Ondes

1.4K Vues

article

16.7 : Résolution de problèmes : Accordage d’une corde de guitare

Ondes

362 Vues

article

16.8 : Énergie cinétique et énergie potentielle d'une onde

Ondes

3.4K Vues

article

16.9 : Énergie et puissance d'une onde

Ondes

3.3K Vues

article

16.10 : Interférence et superposition des ondes

Ondes

4.6K Vues

article

16.11 : Réflexion d'une onde

Ondes

3.6K Vues

article

16.12 : Propagation des ondes

Ondes

2.2K Vues

article

16.13 : Ondes stationnaires

Ondes

2.9K Vues

article

16.14 : Modes d'ondes stationnaires

Ondes

2.8K Vues

article

16.15 : Modes d’ondes stationnaires : II

Ondes

779 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.