Anmelden

Mathematically, the motion of a wave can be studied using a wavefunction. Consider a string oscillating up and down in simple harmonic motion, having a period T. The wave on the string is sinusoidal and is translated in the positive x-direction as time progresses. Sine is a function of the angle θ, oscillating between +A and −A and repeating every 2π radians. To construct a wave model, the ratio of the angle θ and the position x is considered.

Figure1

From the ratio, using the value of θ, and multiplying the sine function with amplitude A, we can model the y-position of the string as a function of position x.

Figure2

The wave on the string travels with a constant velocity and moves a distance equal to vt in time t, so we can modify the wave function using this. Further, multiplying by the term 2π/λ simplifies the equation.

Figure3

Recall the expressions for wave number and angular frequency, which modify the first and second terms of the above equation, respectively. Hence the reduced expression for the wavefunction of a simple harmonic wave on a string is obtained.

Figure4

An angle φ that corresponds to the initial phase of the wave is added to the wave function. It is an indicator of the initial position of the particle just before the start of wave motion and is used to determine various wave parameters.

This text is adapted from Openstax, University Physics Volume 1, Section 16.2: Mathematics of Waves.

Tags
Wave MotionWavefunctionSimple Harmonic MotionSinusoidal WaveAmplitudeWave ModelPosition XWave VelocityWave NumberAngular FrequencyInitial PhaseWave Parameters

Aus Kapitel 16:

article

Now Playing

16.3 : Equations of Wave Motion

Waves

4.0K Ansichten

article

16.1 : Wanderende Wellen

Waves

4.9K Ansichten

article

16.2 : Wellen-Parameter

Waves

5.7K Ansichten

article

16.4 : Grafische Darstellung der Wellenfunktion

Waves

1.5K Ansichten

article

16.5 : Geschwindigkeit und Beschleunigung einer Welle

Waves

3.7K Ansichten

article

16.6 : Geschwindigkeit einer Transversalwelle

Waves

1.4K Ansichten

article

16.7 : Problemlösung: Stimmen einer Gitarrensaite

Waves

362 Ansichten

article

16.8 : Kinetische und potentielle Energie einer Welle

Waves

3.4K Ansichten

article

16.9 : Energie und Kraft einer Welle

Waves

3.3K Ansichten

article

16.10 : Interferenz und Überlagerung von Wellen

Waves

4.6K Ansichten

article

16.11 : Reflexion von Wellen

Waves

3.6K Ansichten

article

16.12 : Ausbreitung von Wellen

Waves

2.2K Ansichten

article

16.13 : Stehende Wellen

Waves

2.9K Ansichten

article

16.14 : Modi der stehenden Wellen - I

Waves

2.8K Ansichten

article

16.15 : Modi der stehenden Wellen: II

Waves

779 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten