Iniciar sesión

Simple unsubstituted benzene has six aromatic protons, all chemically equivalent. Therefore, benzene exhibits only a singlet peak at δ7.3 ppm in the 1H NMR spectrum. The observed shift is far downfield because the aromatic ring current strongly deshields the protons. Any substitution on the benzene ring makes the aromatic protons nonequivalent, and the protons split each other. The peak is, therefore, no longer a singlet and the splitting pattern and their associated coupling constants depend on the degree of substitution on the ring. The nature of the substituents on the benzene ring either increases or decreases the ring proton's chemical shift values. Additionally, an electron-withdrawing substituent moves the proton's chemical shift farther downfield, while an electron-donating group moves the signal upfield. Monosubstituted benzene has a more complex 1H NMR spectrum in the aromatic region due to several splittings between protons on adjacent carbons as well as coupling between protons that are more than one C–C bond in the ring system. A disubstituted ring shows a typical doublet pattern if the ring's substituents have a para relationship.

In 13C NMR spectroscopy, the aromatic carbons exhibit signals betweenδ110-160. Substituted benzene exhibits six peaks corresponding to six nonequivalent sets of protons. The extent of the signal shift depends on the type of ring substituents. A quaternary ring carbon shows the highest shifts compared to other ring carbons. Benzylic and alkyl carbons of the substituents are observed in the upfield region.

Tags
NMR SpectroscopyBenzene DerivativesAromatic ProtonsChemical ShiftProton SplittingSubstitution EffectsElectron withdrawing SubstituentsElectron donating GroupsMonosubstituted BenzeneDisubstituted Benzene1H NMR Spectrum13C NMR SpectroscopyQuaternary CarbonUpfield Region

Del capítulo 18:

article

Now Playing

18.1 : NMR Spectroscopy of Benzene Derivatives

Reactions of Aromatic Compounds

7.2K Vistas

article

18.2 : Reacciones en la posición bencílica: oxidación y reducción

Reactions of Aromatic Compounds

3.2K Vistas

article

18.3 : Reacciones en la posición bencílica: halogenación

Reactions of Aromatic Compounds

2.2K Vistas

article

18.4 : Sustitución aromática electrofílica: descripción general

Reactions of Aromatic Compounds

9.8K Vistas

article

18.5 : Sustitución aromática electrofílica: cloración y bromación del benceno

Reactions of Aromatic Compounds

6.8K Vistas

article

18.6 : Sustitución aromática electrofílica: fluoración y yodación del benceno

Reactions of Aromatic Compounds

5.5K Vistas

article

18.7 : Sustitución aromática electrofílica: nitración del benceno

Reactions of Aromatic Compounds

5.0K Vistas

article

18.8 : Sustitución aromática electrofílica: sulfonación del benceno

Reactions of Aromatic Compounds

5.0K Vistas

article

18.9 : Sustitución aromática electrofílica: Friedel-Crafts alquilación de benceno

Reactions of Aromatic Compounds

6.1K Vistas

article

18.10 : Sustitución aromática electrofílica: acilación de benceno de Friedel-Crafts

Reactions of Aromatic Compounds

6.3K Vistas

article

18.11 : Limitaciones de las reacciones de Friedel-Crafts

Reactions of Aromatic Compounds

5.1K Vistas

article

18.12 : Efecto Directivo de los Sustituyentes: Grupos Orto-Para-Directores

Reactions of Aromatic Compounds

5.7K Vistas

article

18.13 : Efecto Directivo de los Sustituyentes: Grupos Meta-Directores

Reactions of Aromatic Compounds

3.9K Vistas

article

18.14 : Activadores orto-para-direccionamientos: –CH3, –OH, –⁠NH2, –OCH3

Reactions of Aromatic Compounds

5.3K Vistas

article

18.15 : Desactivadores orto-para-direccionamientos: Halógenos

Reactions of Aromatic Compounds

4.9K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados