Sign In

Simple unsubstituted benzene has six aromatic protons, all chemically equivalent. Therefore, benzene exhibits only a singlet peak at δ7.3 ppm in the 1H NMR spectrum. The observed shift is far downfield because the aromatic ring current strongly deshields the protons. Any substitution on the benzene ring makes the aromatic protons nonequivalent, and the protons split each other. The peak is, therefore, no longer a singlet and the splitting pattern and their associated coupling constants depend on the degree of substitution on the ring. The nature of the substituents on the benzene ring either increases or decreases the ring proton's chemical shift values. Additionally, an electron-withdrawing substituent moves the proton's chemical shift farther downfield, while an electron-donating group moves the signal upfield. Monosubstituted benzene has a more complex 1H NMR spectrum in the aromatic region due to several splittings between protons on adjacent carbons as well as coupling between protons that are more than one C–C bond in the ring system. A disubstituted ring shows a typical doublet pattern if the ring's substituents have a para relationship.

In 13C NMR spectroscopy, the aromatic carbons exhibit signals betweenδ110-160. Substituted benzene exhibits six peaks corresponding to six nonequivalent sets of protons. The extent of the signal shift depends on the type of ring substituents. A quaternary ring carbon shows the highest shifts compared to other ring carbons. Benzylic and alkyl carbons of the substituents are observed in the upfield region.

Tags
NMR SpectroscopyBenzene DerivativesAromatic ProtonsChemical ShiftProton SplittingSubstitution EffectsElectron withdrawing SubstituentsElectron donating GroupsMonosubstituted BenzeneDisubstituted Benzene1H NMR Spectrum13C NMR SpectroscopyQuaternary CarbonUpfield Region

From Chapter 18:

article

Now Playing

18.1 : NMR Spectroscopy of Benzene Derivatives

Reactions of Aromatic Compounds

7.2K Views

article

18.2 : תגובות בתנוחת בנזיל: חמצון וחיזור

Reactions of Aromatic Compounds

3.2K Views

article

18.3 : תגובות בתנוחת בנזיליץ: הלוגנציה

Reactions of Aromatic Compounds

2.2K Views

article

18.4 : תחליף ארומטי אלקטרופילי: סקירה כללית

Reactions of Aromatic Compounds

9.8K Views

article

18.5 : תחליף ארומטי אלקטרופילי: הכלרה וברום של בנזן

Reactions of Aromatic Compounds

6.8K Views

article

18.6 : תחליף ארומטי אלקטרופילי: הפלרה ויוד של בנזן

Reactions of Aromatic Compounds

5.5K Views

article

18.7 : תחליף ארומטי אלקטרופילי: ניטרציה של בנזן

Reactions of Aromatic Compounds

5.0K Views

article

18.8 : תחליף ארומטי אלקטרופילי: סולפוניציה של בנזן

Reactions of Aromatic Compounds

5.0K Views

article

18.9 : החלפה ארומטית אלקטרופילית: פרידל – קראפט אלקילציה של בנזן

Reactions of Aromatic Compounds

6.1K Views

article

18.10 : החלפה ארומטית אלקטרופילית: פרידל-קראפט אצילציה של בנזן

Reactions of Aromatic Compounds

6.3K Views

article

18.11 : מגבלות תגובות פרידל-קראפט

Reactions of Aromatic Compounds

5.1K Views

article

18.12 : השפעה מכוונת של מחליפים: קבוצות אורתו-פארא-מכוונות

Reactions of Aromatic Compounds

5.7K Views

article

18.13 : אפקט בימוי של מחליפים: קבוצות מטא-בימוי

Reactions of Aromatic Compounds

3.9K Views

article

18.14 : אורתו-פארא-בימוי מפעילים: –CH3, –OH, –⁠NH2, –OCH3

Reactions of Aromatic Compounds

5.3K Views

article

18.15 : נטרול אורתו-פארא-בימוי: הלוגנים

Reactions of Aromatic Compounds

4.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved