Accedi

Simple unsubstituted benzene has six aromatic protons, all chemically equivalent. Therefore, benzene exhibits only a singlet peak at δ7.3 ppm in the 1H NMR spectrum. The observed shift is far downfield because the aromatic ring current strongly deshields the protons. Any substitution on the benzene ring makes the aromatic protons nonequivalent, and the protons split each other. The peak is, therefore, no longer a singlet and the splitting pattern and their associated coupling constants depend on the degree of substitution on the ring. The nature of the substituents on the benzene ring either increases or decreases the ring proton's chemical shift values. Additionally, an electron-withdrawing substituent moves the proton's chemical shift farther downfield, while an electron-donating group moves the signal upfield. Monosubstituted benzene has a more complex 1H NMR spectrum in the aromatic region due to several splittings between protons on adjacent carbons as well as coupling between protons that are more than one C–C bond in the ring system. A disubstituted ring shows a typical doublet pattern if the ring's substituents have a para relationship.

In 13C NMR spectroscopy, the aromatic carbons exhibit signals betweenδ110-160. Substituted benzene exhibits six peaks corresponding to six nonequivalent sets of protons. The extent of the signal shift depends on the type of ring substituents. A quaternary ring carbon shows the highest shifts compared to other ring carbons. Benzylic and alkyl carbons of the substituents are observed in the upfield region.

Tags
NMR SpectroscopyBenzene DerivativesAromatic ProtonsChemical ShiftProton SplittingSubstitution EffectsElectron withdrawing SubstituentsElectron donating GroupsMonosubstituted BenzeneDisubstituted Benzene1H NMR Spectrum13C NMR SpectroscopyQuaternary CarbonUpfield Region

Dal capitolo 18:

article

Now Playing

18.1 : NMR Spectroscopy of Benzene Derivatives

Reactions of Aromatic Compounds

7.2K Visualizzazioni

article

18.2 : Reazioni in posizione benzilica: ossidazione e riduzione

Reactions of Aromatic Compounds

3.2K Visualizzazioni

article

18.3 : Reazioni in posizione benzilica: alogenazione

Reactions of Aromatic Compounds

2.2K Visualizzazioni

article

18.4 : Sostituzione Aromatica Elettrofila: Panoramica

Reactions of Aromatic Compounds

9.8K Visualizzazioni

article

18.5 : Sostituzione Aromatica Elettrofila: Clorurazione e Bromurazione del Benzene

Reactions of Aromatic Compounds

6.8K Visualizzazioni

article

18.6 : Sostituzione elettrofila aromatica: fluorurazione e iodinazione del benzene

Reactions of Aromatic Compounds

5.5K Visualizzazioni

article

18.7 : Sostituzione aromatica elettrofila: Nitrazione del benzene

Reactions of Aromatic Compounds

5.0K Visualizzazioni

article

18.8 : Sostituzione elettrofila aromatica: solfonazione del benzene

Reactions of Aromatic Compounds

5.0K Visualizzazioni

article

18.9 : Sostituzione aromatica elettrofila: Alchilazione del benzene di Friedel-Crafts

Reactions of Aromatic Compounds

6.1K Visualizzazioni

article

18.10 : Sostituzione aromatica elettrofila: acilazione del benzene di Friedel-Crafts

Reactions of Aromatic Compounds

6.3K Visualizzazioni

article

18.11 : Limitazioni delle reazioni di Friedel-Crafts

Reactions of Aromatic Compounds

5.1K Visualizzazioni

article

18.12 : Effetto direttivo dei sostituenti: gruppi orto-para-direzionali

Reactions of Aromatic Compounds

5.7K Visualizzazioni

article

18.13 : Effetto direzionale dei sostituenti: gruppi meta-direttivi

Reactions of Aromatic Compounds

3.9K Visualizzazioni

article

18.14 : Attivatori orto-para-direzionali: –CH3, –OH, –⁠NH2, –OCH3

Reactions of Aromatic Compounds

5.3K Visualizzazioni

article

18.15 : Disattivatori orto-para-direzionali: Alogeni

Reactions of Aromatic Compounds

4.9K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati