Iniciar sesión

This lesson delves into the geometry of a radical, which is influenced by the electronic structure of the molecule. The principle is similar to that of a lone pair, where the unpaired electron influences the geometry at the radical center.

Accordingly, the structure of a trivalent radical lies between the geometries of carbocations and carbanions. An sp2-hybridized carbocation is trigonal planar, while an sp3-hybridized carbanion is trigonal pyramidal. Here, the difference in geometry is attributed to the difference in the number of nonbonding electrons. While the former has nil, the latter has two nonbonding electrons. Hence, a carbon radical with one nonbonding electron present in the p orbital falls between these two cases.

It is therefore reasonable to expect the radical geometry of a trivalent carbon species to lie between trigonal planar and trigonal pyramidal. As observed experimentally, the trivalent carbon-centered radicals typically possess superficially pyramidal geometry but are nearly planar. For instance, this is observed in oxygenated radicals like CH2OH and CMe2OH. Certain carbon-centered radicals, such as CF3, are closer in geometry to the sp3-hybridized carbanions, which are trigonal pyramidal. In contrast, the methyl radical is fully trigonal planar like an sp2-hybridized carbocation.

The chirality of radicals is also a good indicator of the geometry. While the carbanion could be chiral given its resistance to pyramidal inversion, radicals can be achiral, since carbon-centered radicals with alkyl substituents that are superficially pyramidal readily undergo pyramidal inversion to become nearly planar.

Tags

RadicalsElectronic StructureGeometryTrivalent RadicalCarbocationCarbanionSp2 hybridizedSp3 hybridizedNonbonding ElectronsCarbon RadicalPyramidal InversionChiralityAlkyl Substituents

Del capítulo 20:

article

Now Playing

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.8K Vistas

article

20.2 : Espectroscopía de Resonancia Paramagnética Electrónica (EPR): Radicales Orgánicos

Radical Chemistry

2.3K Vistas

article

20.3 : Formación Radical: Visión General

Radical Chemistry

2.0K Vistas

article

20.4 : Formación de radicales: homólisis

Radical Chemistry

3.3K Vistas

article

20.5 : Formación Radical: Abstracción

Radical Chemistry

3.3K Vistas

article

20.6 : Formación de radicales: Adición

Radical Chemistry

1.6K Vistas

article

20.7 : Formación de Radicales: Eliminación

Radical Chemistry

1.6K Vistas

article

20.8 : Reactividad radical: Visión general

Radical Chemistry

1.9K Vistas

article

20.9 : Reactividad radical: efectos estéricos

Radical Chemistry

1.8K Vistas

article

20.10 : Reactividad de radicales: efectos de concentración

Radical Chemistry

1.5K Vistas

article

20.11 : Reactividad de radicales: radicales electrofílicos

Radical Chemistry

1.8K Vistas

article

20.12 : Reactividad de radicales: radicales nucleofílicos

Radical Chemistry

2.0K Vistas

article

20.13 : Reactividad de radicales: intramolecular vs intermolecular

Radical Chemistry

1.7K Vistas

article

20.14 : Autoxidación radical

Radical Chemistry

2.1K Vistas

article

20.15 : Oxidación radical de alcoholes alílicos y bencílicos

Radical Chemistry

1.8K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados