JoVE Logo

로그인

This lesson delves into the geometry of a radical, which is influenced by the electronic structure of the molecule. The principle is similar to that of a lone pair, where the unpaired electron influences the geometry at the radical center.

Accordingly, the structure of a trivalent radical lies between the geometries of carbocations and carbanions. An sp2-hybridized carbocation is trigonal planar, while an sp3-hybridized carbanion is trigonal pyramidal. Here, the difference in geometry is attributed to the difference in the number of nonbonding electrons. While the former has nil, the latter has two nonbonding electrons. Hence, a carbon radical with one nonbonding electron present in the p orbital falls between these two cases.

It is therefore reasonable to expect the radical geometry of a trivalent carbon species to lie between trigonal planar and trigonal pyramidal. As observed experimentally, the trivalent carbon-centered radicals typically possess superficially pyramidal geometry but are nearly planar. For instance, this is observed in oxygenated radicals like CH2OH and CMe2OH. Certain carbon-centered radicals, such as CF3, are closer in geometry to the sp3-hybridized carbanions, which are trigonal pyramidal. In contrast, the methyl radical is fully trigonal planar like an sp2-hybridized carbocation.

The chirality of radicals is also a good indicator of the geometry. While the carbanion could be chiral given its resistance to pyramidal inversion, radicals can be achiral, since carbon-centered radicals with alkyl substituents that are superficially pyramidal readily undergo pyramidal inversion to become nearly planar.

Tags

RadicalsElectronic StructureGeometryTrivalent RadicalCarbocationCarbanionSp2 hybridizedSp3 hybridizedNonbonding ElectronsCarbon RadicalPyramidal InversionChiralityAlkyl Substituents

장에서 20:

article

Now Playing

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.8K Views

article

20.2 : 전자 상자성 공명(EPR) 분광법: 유기 라디칼

Radical Chemistry

2.3K Views

article

20.3 : 급진적 형성: 개요

Radical Chemistry

2.0K Views

article

20.4 : 라디칼 형성 : 상동 분해

Radical Chemistry

3.4K Views

article

20.5 : 급진적 형성 : 추상화

Radical Chemistry

3.3K Views

article

20.6 : 급진적 형성: 덧셈

Radical Chemistry

1.6K Views

article

20.7 : 급진적 형성: 제거

Radical Chemistry

1.6K Views

article

20.8 : Radical Reactivity: 개요

Radical Chemistry

2.0K Views

article

20.9 : 급진적 반응성: 입체 효과

Radical Chemistry

1.9K Views

article

20.10 : 라디칼 반응성: 집중 효과

Radical Chemistry

1.5K Views

article

20.11 : 라디칼 반응성: 친전자성 라디칼

Radical Chemistry

1.8K Views

article

20.12 : 라디칼 반응성: 친핵성 라디칼

Radical Chemistry

2.0K Views

article

20.13 : 라디칼 반응성: 분자내 vs 분자간

Radical Chemistry

1.7K Views

article

20.14 : 급진적 자율산화

Radical Chemistry

2.1K Views

article

20.15 : Allylic 및 Benzylic Alcohols의 라디칼 산화

Radical Chemistry

1.9K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유