Iniciar sesión

A binomial distribution is a probability distribution for a procedure with a fixed number of trials, where each trial can have only two outcomes.

The outcomes of a binomial experiment fit a binomial probability distribution. A statistical experiment can be classified as a binomial experiment if the following conditions are met:

There are a fixed number of trials. Think of trials as repetitions of an experiment. The letter n denotes the number of trials.

There are only two possible outcomes, called "success" and "failure," for each trial. The letter p denotes the probability of success on one trial, and q denotes the probability of failure on one trial. p + q = 1.

The n trials are independent and are repeated using identical conditions. Because the n trials are independent, the outcome of one trial does not help in predicting the outcome of another trial. Another way of saying this is that for each individual trial, the probability, p, of success and probability, q, of a failure remain the same. For example, randomly guessing at a true-false statistics question has only two outcomes. If success is guessing correctly, then failure is guessing incorrectly. Suppose Joe always guesses correctly on any statistics true-false question with probability p = 0.6. Then, q = 0.4. This means that for every true-false statistics question Joe answers, his probability of success (p = 0.6) and his probability of failure (q = 0.4) remain the same.

This text is adapted from Openstax, Introductory Statistics, Section 4.3, Binomial Distribution

Tags
Binomial DistributionProbability DistributionFixed Number Of TrialsSuccessFailureProbability Of SuccessProbability Of FailureIndependent TrialsStatistical ExperimentBinomial ExperimentOutcomesOpenstaxIntroductory Statistics

Del capítulo 6:

article

Now Playing

6.7 : Binomial Probability Distribution

Probability Distributions

9.9K Vistas

article

6.1 : La probabilidad en estadística

Probability Distributions

11.9K Vistas

article

6.2 : Variables aleatorias

Probability Distributions

11.0K Vistas

article

6.3 : Distribuciones de probabilidad

Probability Distributions

6.3K Vistas

article

6.4 : Histogramas de probabilidad

Probability Distributions

10.7K Vistas

article

6.5 : Resultados inusuales

Probability Distributions

3.1K Vistas

article

6.6 : Valor esperado

Probability Distributions

3.7K Vistas

article

6.8 : Distribución de probabilidad de Poisson

Probability Distributions

7.6K Vistas

article

6.9 : Distribución uniforme

Probability Distributions

4.6K Vistas

article

6.10 : Distribución normal

Probability Distributions

10.3K Vistas

article

6.11 : z Puntuaciones y área bajo la curva

Probability Distributions

10.2K Vistas

article

6.12 : Aplicaciones de la Distribución Normal

Probability Distributions

4.8K Vistas

article

6.13 : Distribución de muestras

Probability Distributions

11.1K Vistas

article

6.14 : Teorema del límite central

Probability Distributions

13.3K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados