JoVE Logo

S'identifier

6.7 : Binomial Probability Distribution

A binomial distribution is a probability distribution for a procedure with a fixed number of trials, where each trial can have only two outcomes.

The outcomes of a binomial experiment fit a binomial probability distribution. A statistical experiment can be classified as a binomial experiment if the following conditions are met:

There are a fixed number of trials. Think of trials as repetitions of an experiment. The letter n denotes the number of trials.

There are only two possible outcomes, called "success" and "failure," for each trial. The letter p denotes the probability of success on one trial, and q denotes the probability of failure on one trial. p + q = 1.

The n trials are independent and are repeated using identical conditions. Because the n trials are independent, the outcome of one trial does not help in predicting the outcome of another trial. Another way of saying this is that for each individual trial, the probability, p, of success and probability, q, of a failure remain the same. For example, randomly guessing at a true-false statistics question has only two outcomes. If success is guessing correctly, then failure is guessing incorrectly. Suppose Joe always guesses correctly on any statistics true-false question with probability p = 0.6. Then, q = 0.4. This means that for every true-false statistics question Joe answers, his probability of success (p = 0.6) and his probability of failure (q = 0.4) remain the same.

This text is adapted from Openstax, Introductory Statistics, Section 4.3, Binomial Distribution

Tags

Binomial DistributionProbability DistributionFixed Number Of TrialsSuccessFailureProbability Of SuccessProbability Of FailureIndependent TrialsStatistical ExperimentBinomial ExperimentOutcomesOpenstaxIntroductory Statistics

Du chapitre 6:

article

Now Playing

6.7 : Binomial Probability Distribution

Probability Distributions

10.1K Vues

article

6.1 : Probabilité en statistiques

Probability Distributions

12.3K Vues

article

6.2 : Variables aléatoires

Probability Distributions

11.3K Vues

article

6.3 : Distributions de probabilité

Probability Distributions

6.7K Vues

article

6.4 : Histogrammes de probabilité

Probability Distributions

11.0K Vues

article

6.5 : Des résultats inhabituels

Probability Distributions

3.1K Vues

article

6.6 : Espérance mathématique

Probability Distributions

3.8K Vues

article

6.8 : Distribution de probabilité de Poisson

Probability Distributions

7.7K Vues

article

6.9 : Distribution uniforme

Probability Distributions

4.7K Vues

article

6.10 : Distribution normale

Probability Distributions

10.5K Vues

article

6.11 : Scores z et aire sous la courbe

Probability Distributions

10.3K Vues

article

6.12 : Applications de la distribution normale

Probability Distributions

4.9K Vues

article

6.13 : Distribution de l’échantillonnage

Probability Distributions

12.1K Vues

article

6.14 : Théorème central limite

Probability Distributions

14.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.