Anmelden

A binomial distribution is a probability distribution for a procedure with a fixed number of trials, where each trial can have only two outcomes.

The outcomes of a binomial experiment fit a binomial probability distribution. A statistical experiment can be classified as a binomial experiment if the following conditions are met:

There are a fixed number of trials. Think of trials as repetitions of an experiment. The letter n denotes the number of trials.

There are only two possible outcomes, called "success" and "failure," for each trial. The letter p denotes the probability of success on one trial, and q denotes the probability of failure on one trial. p + q = 1.

The n trials are independent and are repeated using identical conditions. Because the n trials are independent, the outcome of one trial does not help in predicting the outcome of another trial. Another way of saying this is that for each individual trial, the probability, p, of success and probability, q, of a failure remain the same. For example, randomly guessing at a true-false statistics question has only two outcomes. If success is guessing correctly, then failure is guessing incorrectly. Suppose Joe always guesses correctly on any statistics true-false question with probability p = 0.6. Then, q = 0.4. This means that for every true-false statistics question Joe answers, his probability of success (p = 0.6) and his probability of failure (q = 0.4) remain the same.

This text is adapted from Openstax, Introductory Statistics, Section 4.3, Binomial Distribution

Tags
Binomial DistributionProbability DistributionFixed Number Of TrialsSuccessFailureProbability Of SuccessProbability Of FailureIndependent TrialsStatistical ExperimentBinomial ExperimentOutcomesOpenstaxIntroductory Statistics

Aus Kapitel 6:

article

Now Playing

6.7 : Binomial Probability Distribution

Probability Distributions

9.9K Ansichten

article

6.1 : Wahrscheinlichkeit in der Statistik

Probability Distributions

11.9K Ansichten

article

6.2 : Zufallsvariable

Probability Distributions

11.0K Ansichten

article

6.3 : Wahrscheinlichkeitsverteilungen

Probability Distributions

6.3K Ansichten

article

6.4 : Wahrscheinlichkeits-Histogramme

Probability Distributions

10.7K Ansichten

article

6.5 : Ungewöhnliche Ergebnisse

Probability Distributions

3.1K Ansichten

article

6.6 : Erwartungswert

Probability Distributions

3.7K Ansichten

article

6.8 : Poisson-Wahrscheinlichkeitsverteilung

Probability Distributions

7.6K Ansichten

article

6.9 : Gleichverteilung

Probability Distributions

4.6K Ansichten

article

6.10 : Normalverteilung

Probability Distributions

10.3K Ansichten

article

6.11 : z-Werte und Fläche unter der Kurve

Probability Distributions

10.2K Ansichten

article

6.12 : Anwendungen der Normalverteilung

Probability Distributions

4.8K Ansichten

article

6.13 : Verteilung der Stichproben

Probability Distributions

11.1K Ansichten

article

6.14 : Zentraler Grenzwertsatz

Probability Distributions

13.3K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten