Iniciar sesión

When the population standard deviation is unknown and the sample size is large, the sample standard deviation s is commonly used as a point estimate of σ. However, it can sometimes under or overestimate the population standard deviation. To overcome this drawback, confidence intervals are determined to estimate population parameters and eliminate any calculation bias accurately. However, this only applies to random samples from normally distributed populations. Knowing the sample mean and standard deviation, one can construct confidence intervals for the population standard deviations at a suitable significance level, such as 95%. A confidence interval is an interval of numbers. It provides a range of reasonable values in which we expect the population parameter to fall. There is no guarantee that a given confidence interval does capture the population standard deviation, but there is a predictable probability of success. The critical values in the right and left tails of the distribution curve provide the confidence intervals of the population standard deviation.

This text is adapted from Openstax, Introductory Statistics, Section 8, Confidence Interval

Tags
Population Standard DeviationSample Standard DeviationPoint EstimateConfidence IntervalsRandom SamplesNormally Distributed PopulationsSample MeanSignificance Level95 Confidence LevelCalculation BiasDistribution CurveCritical Values

Del capítulo 8:

article

Now Playing

8.7 : Estimating Population Standard Deviation

Distributions

2.9K Vistas

article

8.1 : Distribuciones para estimar el parámetro de población

Distributions

3.9K Vistas

article

8.2 : Grados de libertad

Distributions

2.9K Vistas

article

8.3 : Distribución de Estudiantes t

Distributions

5.7K Vistas

article

8.4 : Elegir entre la distribución z y t

Distributions

2.7K Vistas

article

8.5 : Distribución de Chi-cuadrado

Distributions

3.4K Vistas

article

8.6 : Encontrar valores críticos para Chi-cuadrado

Distributions

2.8K Vistas

article

8.8 : Prueba de bondad de ajuste

Distributions

3.2K Vistas

article

8.9 : Frecuencias esperadas en las pruebas de bondad de ajuste

Distributions

2.5K Vistas

article

8.10 : Tabla de contingencia

Distributions

2.4K Vistas

article

8.11 : Introducción a la Prueba de Independencia

Distributions

2.0K Vistas

article

8.12 : Prueba de hipótesis para la prueba de independencia

Distributions

3.4K Vistas

article

8.13 : Determinación de la frecuencia esperada

Distributions

2.1K Vistas

article

8.14 : Prueba de homogeneidad

Distributions

1.9K Vistas

article

8.15 : Distribución F

Distributions

3.6K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados