Anmelden

When the population standard deviation is unknown and the sample size is large, the sample standard deviation s is commonly used as a point estimate of σ. However, it can sometimes under or overestimate the population standard deviation. To overcome this drawback, confidence intervals are determined to estimate population parameters and eliminate any calculation bias accurately. However, this only applies to random samples from normally distributed populations. Knowing the sample mean and standard deviation, one can construct confidence intervals for the population standard deviations at a suitable significance level, such as 95%. A confidence interval is an interval of numbers. It provides a range of reasonable values in which we expect the population parameter to fall. There is no guarantee that a given confidence interval does capture the population standard deviation, but there is a predictable probability of success. The critical values in the right and left tails of the distribution curve provide the confidence intervals of the population standard deviation.

This text is adapted from Openstax, Introductory Statistics, Section 8, Confidence Interval

Tags

Population Standard DeviationSample Standard DeviationPoint EstimateConfidence IntervalsRandom SamplesNormally Distributed PopulationsSample MeanSignificance Level95 Confidence LevelCalculation BiasDistribution CurveCritical Values

Aus Kapitel 8:

article

Now Playing

8.7 : Estimating Population Standard Deviation

Distributions

2.9K Ansichten

article

8.1 : Verteilungen zur Schätzung des Parameters "Population"

Distributions

4.0K Ansichten

article

8.2 : Freiheitsgrade

Distributions

3.0K Ansichten

article

8.3 : Verteilung der Studenten t

Distributions

5.7K Ansichten

article

8.4 : Auswahl zwischen z- und t-Verteilung

Distributions

2.7K Ansichten

article

8.5 : Chi-Quadrat-Verteilung

Distributions

3.4K Ansichten

article

8.6 : Kritische Werte für das Chi-Quadrat finden

Distributions

2.8K Ansichten

article

8.8 : Prüfung der Güte der Anpassung

Distributions

3.2K Ansichten

article

8.9 : Erwartete Häufigkeiten bei Tests auf Güte der Anpassung

Distributions

2.5K Ansichten

article

8.10 : Kontingenztafel

Distributions

2.4K Ansichten

article

8.11 : Einführung in die Unabhängigkeitsprüfung

Distributions

2.0K Ansichten

article

8.12 : Hypothesentest für den Test der Unabhängigkeit

Distributions

3.4K Ansichten

article

8.13 : Bestimmung der zu erwartenden Häufigkeit

Distributions

2.1K Ansichten

article

8.14 : Test auf Homogenität

Distributions

1.9K Ansichten

article

8.15 : F Verteilung

Distributions

3.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten