When the population standard deviation is unknown and the sample size is large, the sample standard deviation s is commonly used as a point estimate of σ. However, it can sometimes under or overestimate the population standard deviation. To overcome this drawback, confidence intervals are determined to estimate population parameters and eliminate any calculation bias accurately. However, this only applies to random samples from normally distributed populations. Knowing the sample mean and standard deviation, one can construct confidence intervals for the population standard deviations at a suitable significance level, such as 95%. A confidence interval is an interval of numbers. It provides a range of reasonable values in which we expect the population parameter to fall. There is no guarantee that a given confidence interval does capture the population standard deviation, but there is a predictable probability of success. The critical values in the right and left tails of the distribution curve provide the confidence intervals of the population standard deviation.

This text is adapted from Openstax, Introductory Statistics, Section 8, Confidence Interval

Tags
Population Standard DeviationSample Standard DeviationPoint EstimateConfidence IntervalsRandom SamplesNormally Distributed PopulationsSample MeanSignificance Level95 Confidence LevelCalculation BiasDistribution CurveCritical Values

Du chapitre 8:

article

Now Playing

8.7 : Estimating Population Standard Deviation

Distributions

2.9K Vues

article

8.1 : Distributions pour estimer le paramètre de population

Distributions

3.8K Vues

article

8.2 : Degrés de liberté

Distributions

2.8K Vues

article

8.3 : Distribution des étudiants

Distributions

5.5K Vues

article

8.4 : Choisir entre la distribution z et t

Distributions

2.5K Vues

article

8.5 : Distribution du khi-deux

Distributions

3.3K Vues

article

8.6 : Trouver les valeurs critiques du khi-deux

Distributions

2.7K Vues

article

8.8 : Test de qualité de l’ajustement

Distributions

3.2K Vues

article

8.9 : Fréquences attendues dans les essais de qualité de l’ajustement

Distributions

2.4K Vues

article

8.10 : Tableau de contingence

Distributions

2.3K Vues

article

8.11 : Introduction au test d’indépendance

Distributions

2.0K Vues

article

8.12 : Test d’hypothèse pour test d’indépendance

Distributions

3.3K Vues

article

8.13 : Détermination de la fréquence prévue

Distributions

2.0K Vues

article

8.14 : Test d’homogénéité

Distributions

1.9K Vues

article

8.15 : F Répartition

Distributions

3.5K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.