Iniciar sesión

For a conductor in which all charges are at rest, the conductor's surface is equipotential. The electric field is always perpendicular to equipotential surfaces. Therefore, in a conductor with static charges, the electric field just outside the conductor is always perpendicular to the conductor's surface. Any tangential component of the electric field will cause charges to move inside the conductor, which will violate the electrostatic nature of the system. In an electrostatic situation, if a conductor has a cavity with no charges inside it, then there can be no charge anywhere on the surface of the cavity. This means that inside a charged metallic enclosure, with no charges inside the enclosure, one can touch the walls of the enclosure from inside without getting an electrical shock.

Consider two conducting spheres of different radii having different surface charge densities and different amounts of static charges. If a thin conducting wire connects these conductors, the whole system becomes equipotential. The potential of each sphere is the same, and the surface charge density and the electric field are higher on the conductor with a smaller radius of curvature. A practical application of this phenomenon is a lightning rod—a grounded metal rod with a sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric field around the sharp point becomes very large. When the field reaches a value of approximately 3.0 × 106 N/C (the dielectric strength of the air), the free ions in the air are accelerated to such high energies that their collisions with air molecules ionize the molecules. The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing some of the positive charges. This keeps the electric field between the cloud and the ground from becoming large enough to produce a lightning bolt in the region around the rod.

Tags
Equipotential SurfacesConductorsStatic ChargesElectric FieldSurface Charge DensityElectrostatic SystemConducting SpheresLightning RodDielectric StrengthElectric PotentialFree ElectronsMetallic Enclosure

Del capítulo 24:

article

Now Playing

24.9 : Equipotential Surfaces and Conductors

Electric Potential

3.2K Vistas

article

24.1 : Energía Potencial Eléctrica

Electric Potential

5.2K Vistas

article

24.2 : Energía potencial eléctrica en un campo eléctrico uniforme

Electric Potential

4.3K Vistas

article

24.3 : Energía potencial eléctrica de dos cargas puntuales

Electric Potential

4.2K Vistas

article

24.4 : Potencial eléctrico y diferencia de potencial

Electric Potential

4.1K Vistas

article

24.5 : Encontrar el potencial eléctrico del campo eléctrico

Electric Potential

3.8K Vistas

article

24.6 : Cálculos de Potencial Eléctrico I

Electric Potential

1.8K Vistas

article

24.7 : Cálculos de Potencial Eléctrico II

Electric Potential

1.5K Vistas

article

24.8 : Superficies equipotenciales y líneas de campo

Electric Potential

3.5K Vistas

article

24.10 : Determinación del campo eléctrico a partir del potencial eléctrico

Electric Potential

4.3K Vistas

article

24.11 : Ecuación de Poisson y Laplace

Electric Potential

2.4K Vistas

article

24.12 : Generador Van de Graaff

Electric Potential

1.6K Vistas

article

24.13 : Energía asociada a una distribución de carga

Electric Potential

1.4K Vistas

article

24.14 : Condiciones de contorno electrostáticas

Electric Potential

355 Vistas

article

24.15 : Segundo teorema de unicidad

Electric Potential

915 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados