サインイン

For a conductor in which all charges are at rest, the conductor's surface is equipotential. The electric field is always perpendicular to equipotential surfaces. Therefore, in a conductor with static charges, the electric field just outside the conductor is always perpendicular to the conductor's surface. Any tangential component of the electric field will cause charges to move inside the conductor, which will violate the electrostatic nature of the system. In an electrostatic situation, if a conductor has a cavity with no charges inside it, then there can be no charge anywhere on the surface of the cavity. This means that inside a charged metallic enclosure, with no charges inside the enclosure, one can touch the walls of the enclosure from inside without getting an electrical shock.

Consider two conducting spheres of different radii having different surface charge densities and different amounts of static charges. If a thin conducting wire connects these conductors, the whole system becomes equipotential. The potential of each sphere is the same, and the surface charge density and the electric field are higher on the conductor with a smaller radius of curvature. A practical application of this phenomenon is a lightning rod—a grounded metal rod with a sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric field around the sharp point becomes very large. When the field reaches a value of approximately 3.0 × 106 N/C (the dielectric strength of the air), the free ions in the air are accelerated to such high energies that their collisions with air molecules ionize the molecules. The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing some of the positive charges. This keeps the electric field between the cloud and the ground from becoming large enough to produce a lightning bolt in the region around the rod.

タグ
Equipotential SurfacesConductorsStatic ChargesElectric FieldSurface Charge DensityElectrostatic SystemConducting SpheresLightning RodDielectric StrengthElectric PotentialFree ElectronsMetallic Enclosure

章から 24:

article

Now Playing

24.9 : Equipotential Surfaces and Conductors

電気ポテンシャル

3.2K 閲覧数

article

24.1 : 電位エネルギー

電気ポテンシャル

5.2K 閲覧数

article

24.2 : 一様電界における電位エネルギー

電気ポテンシャル

4.3K 閲覧数

article

24.3 : 2点電荷の電気ポテンシャルエネルギー

電気ポテンシャル

4.2K 閲覧数

article

24.4 : 電位と電位差

電気ポテンシャル

4.1K 閲覧数

article

24.5 : 電界から電位を求める

電気ポテンシャル

3.8K 閲覧数

article

24.6 : 電位の計算I

電気ポテンシャル

1.8K 閲覧数

article

24.7 : 電位計算 II

電気ポテンシャル

1.5K 閲覧数

article

24.8 : 等電位サーフェスと磁力線

電気ポテンシャル

3.5K 閲覧数

article

24.10 : 電位からの電界の決定

電気ポテンシャル

4.3K 閲覧数

article

24.11 : ポアソン方程式とラプラス方程式

電気ポテンシャル

2.4K 閲覧数

article

24.12 : Van de Graaffジェネレーター

電気ポテンシャル

1.6K 閲覧数

article

24.13 : 電荷分布に関連付けられたエネルギー

電気ポテンシャル

1.4K 閲覧数

article

24.14 : 静電境界条件

電気ポテンシャル

355 閲覧数

article

24.15 : 第二一意性定理

電気ポテンシャル

915 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved