S'identifier

For a conductor in which all charges are at rest, the conductor's surface is equipotential. The electric field is always perpendicular to equipotential surfaces. Therefore, in a conductor with static charges, the electric field just outside the conductor is always perpendicular to the conductor's surface. Any tangential component of the electric field will cause charges to move inside the conductor, which will violate the electrostatic nature of the system. In an electrostatic situation, if a conductor has a cavity with no charges inside it, then there can be no charge anywhere on the surface of the cavity. This means that inside a charged metallic enclosure, with no charges inside the enclosure, one can touch the walls of the enclosure from inside without getting an electrical shock.

Consider two conducting spheres of different radii having different surface charge densities and different amounts of static charges. If a thin conducting wire connects these conductors, the whole system becomes equipotential. The potential of each sphere is the same, and the surface charge density and the electric field are higher on the conductor with a smaller radius of curvature. A practical application of this phenomenon is a lightning rod—a grounded metal rod with a sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric field around the sharp point becomes very large. When the field reaches a value of approximately 3.0 × 106 N/C (the dielectric strength of the air), the free ions in the air are accelerated to such high energies that their collisions with air molecules ionize the molecules. The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing some of the positive charges. This keeps the electric field between the cloud and the ground from becoming large enough to produce a lightning bolt in the region around the rod.

Tags
Equipotential SurfacesConductorsStatic ChargesElectric FieldSurface Charge DensityElectrostatic SystemConducting SpheresLightning RodDielectric StrengthElectric PotentialFree ElectronsMetallic Enclosure

Du chapitre 24:

article

Now Playing

24.9 : Equipotential Surfaces and Conductors

Electric Potential

3.2K Vues

article

24.1 : Potentiel électrique Énergie

Electric Potential

5.2K Vues

article

24.2 : Énergie potentielle électrique dans un champ électrique uniforme

Electric Potential

4.3K Vues

article

24.3 : Énergie potentielle électrique des charges en deux points

Electric Potential

4.2K Vues

article

24.4 : Potentiel électrique et différence de potentiel

Electric Potential

4.1K Vues

article

24.5 : Détermination du potentiel électrique à partir du champ électrique

Electric Potential

3.8K Vues

article

24.6 : Calculs du potentiel électrique I

Electric Potential

1.8K Vues

article

24.7 : Calculs du potentiel électrique II

Electric Potential

1.5K Vues

article

24.8 : Surfaces équipotentielles et lignes de champ

Electric Potential

3.5K Vues

article

24.10 : Détermination du champ électrique à partir du potentiel électrique

Electric Potential

4.3K Vues

article

24.11 : Équation de Poisson et de Laplace

Electric Potential

2.4K Vues

article

24.12 : Groupe électrogène Van de Graaff

Electric Potential

1.6K Vues

article

24.13 : Énergie associée à une distribution de charge

Electric Potential

1.4K Vues

article

24.14 : Conditions limites électrostatiques

Electric Potential

355 Vues

article

24.15 : Deuxième théorème d’unicité

Electric Potential

915 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.