When a paint brush is immersed in water, the bristles wave freely inside the water. When it is taken out, the bristles stick together. The reason behind this effect is surface tension.

Consider a beaker filled with liquid. The bulk molecules in the liquid experience equal attractive forces on all sides with the surrounding molecules. However, the surface molecules experience a net attractive force downward due to the bulk molecules. The surface of the liquid behaves like a stretched membrane, and it tends to minimize the surface area. This property of liquids is called surface tension. This is why liquid drops take a spherical shape, as a sphere has the minimum surface area for a given volume.

Like a needle, certain objects denser than water can float on water due to surface tension.

Consider a frame with a sliding arm dipped in soap solution. The soap bubble pulls the sliding arm inward due to surface tension. If the frame is kept in a vertical position, so that the sliding arm can move up and down, then a small weight can be hung on the sliding arm to keep the frame in equilibrium. This weight is equal to the force required to pull the arm back outward. Surface tension is expressed as force per unit length. Its unit is N/m or J/m2.

Surface molecules have higher potential energy than molecules inside the bulk of a liquid. This energy is called surface energy, which is the product of force and displacement.

Tags
Surface TensionSurface EnergyLiquid BehaviorAttractive ForcesSurface MoleculesMinimum Surface AreaSpherical ShapeFloating ObjectsEquilibriumForce Per Unit LengthPotential EnergySoap BubbleLiquid Drops

Del capítulo 13:

article

Now Playing

13.12 : Surface Tension and Surface Energy

Mecánica de fluidos

1.1K Vistas

article

13.1 : Características de los fluidos

Mecánica de fluidos

3.2K Vistas

article

13.2 : Densidad

Mecánica de fluidos

10.4K Vistas

article

13.3 : Presión de fluidos

Mecánica de fluidos

10.0K Vistas

article

13.4 : Variación de la presión atmosférica

Mecánica de fluidos

1.7K Vistas

article

13.5 : Principio de Pascal

Mecánica de fluidos

7.5K Vistas

article

13.6 : Aplicación del principio de Pascal

Mecánica de fluidos

7.5K Vistas

article

13.7 : Manómetros

Mecánica de fluidos

2.6K Vistas

article

13.8 : Flotabilidad

Mecánica de fluidos

5.0K Vistas

article

13.9 : Principio de Arquímedes

Mecánica de fluidos

7.1K Vistas

article

13.10 : Densidad y el principio de Arquímedes

Mecánica de fluidos

6.2K Vistas

article

13.11 : Fluidos aceleradores

Mecánica de fluidos

919 Vistas

article

13.13 : Exceso de presión dentro de una gota y una burbuja

Mecánica de fluidos

1.4K Vistas

article

13.14 : Ángulo de contacto

Mecánica de fluidos

11.0K Vistas

article

13.15 : Ascenso de líquido en un tubo capilar

Mecánica de fluidos

979 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados