When a paint brush is immersed in water, the bristles wave freely inside the water. When it is taken out, the bristles stick together. The reason behind this effect is surface tension.

Consider a beaker filled with liquid. The bulk molecules in the liquid experience equal attractive forces on all sides with the surrounding molecules. However, the surface molecules experience a net attractive force downward due to the bulk molecules. The surface of the liquid behaves like a stretched membrane, and it tends to minimize the surface area. This property of liquids is called surface tension. This is why liquid drops take a spherical shape, as a sphere has the minimum surface area for a given volume.

Like a needle, certain objects denser than water can float on water due to surface tension.

Consider a frame with a sliding arm dipped in soap solution. The soap bubble pulls the sliding arm inward due to surface tension. If the frame is kept in a vertical position, so that the sliding arm can move up and down, then a small weight can be hung on the sliding arm to keep the frame in equilibrium. This weight is equal to the force required to pull the arm back outward. Surface tension is expressed as force per unit length. Its unit is N/m or J/m2.

Surface molecules have higher potential energy than molecules inside the bulk of a liquid. This energy is called surface energy, which is the product of force and displacement.

Tagi
Surface TensionSurface EnergyLiquid BehaviorAttractive ForcesSurface MoleculesMinimum Surface AreaSpherical ShapeFloating ObjectsEquilibriumForce Per Unit LengthPotential EnergySoap BubbleLiquid Drops

Z rozdziału 13:

article

Now Playing

13.12 : Surface Tension and Surface Energy

Fluid Mechanics

1.1K Wyświetleń

article

13.1 : Charakterystyka płynów

Fluid Mechanics

3.1K Wyświetleń

article

13.2 : Gęstość

Fluid Mechanics

10.2K Wyświetleń

article

13.3 : Ciśnienie płynów

Fluid Mechanics

9.8K Wyświetleń

article

13.4 : Zmienność ciśnienia atmosferycznego

Fluid Mechanics

1.7K Wyświetleń

article

13.5 : Prawo Pascala

Fluid Mechanics

7.3K Wyświetleń

article

13.6 : Zastosowanie prawa Pascala

Fluid Mechanics

7.3K Wyświetleń

article

13.7 : Manometry

Fluid Mechanics

2.5K Wyświetleń

article

13.8 : Pływalności

Fluid Mechanics

4.7K Wyświetleń

article

13.9 : Zasada Archimedesa

Fluid Mechanics

6.8K Wyświetleń

article

13.10 : Gęstość i zasada Archimedesa

Fluid Mechanics

6.2K Wyświetleń

article

13.11 : Płyny przyspieszające

Fluid Mechanics

894 Wyświetleń

article

13.13 : Nadciśnienie wewnątrz kropli i pęcherzyka

Fluid Mechanics

1.4K Wyświetleń

article

13.14 : Kąt zwilżania

Fluid Mechanics

10.9K Wyświetleń

article

13.15 : Wzrost cieczy w rurce kapilarnej

Fluid Mechanics

868 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone