S'identifier

When a paint brush is immersed in water, the bristles wave freely inside the water. When it is taken out, the bristles stick together. The reason behind this effect is surface tension.

Consider a beaker filled with liquid. The bulk molecules in the liquid experience equal attractive forces on all sides with the surrounding molecules. However, the surface molecules experience a net attractive force downward due to the bulk molecules. The surface of the liquid behaves like a stretched membrane, and it tends to minimize the surface area. This property of liquids is called surface tension. This is why liquid drops take a spherical shape, as a sphere has the minimum surface area for a given volume.

Like a needle, certain objects denser than water can float on water due to surface tension.

Consider a frame with a sliding arm dipped in soap solution. The soap bubble pulls the sliding arm inward due to surface tension. If the frame is kept in a vertical position, so that the sliding arm can move up and down, then a small weight can be hung on the sliding arm to keep the frame in equilibrium. This weight is equal to the force required to pull the arm back outward. Surface tension is expressed as force per unit length. Its unit is N/m or J/m2.

Surface molecules have higher potential energy than molecules inside the bulk of a liquid. This energy is called surface energy, which is the product of force and displacement.

Tags
Surface TensionSurface EnergyLiquid BehaviorAttractive ForcesSurface MoleculesMinimum Surface AreaSpherical ShapeFloating ObjectsEquilibriumForce Per Unit LengthPotential EnergySoap BubbleLiquid Drops

Du chapitre 13:

article

Now Playing

13.12 : Surface Tension and Surface Energy

Mécanique des fluides

1.2K Vues

article

13.1 : Caractéristiques des fluides

Mécanique des fluides

3.4K Vues

article

13.2 : Densité

Mécanique des fluides

11.4K Vues

article

13.3 : Pression des fluides

Mécanique des fluides

11.8K Vues

article

13.4 : Variation de la pression atmosphérique

Mécanique des fluides

1.8K Vues

article

13.5 : Le principe de Pascal

Mécanique des fluides

7.6K Vues

article

13.6 : Application du principe de Pascal

Mécanique des fluides

7.6K Vues

article

13.7 : Manomètres

Mécanique des fluides

2.7K Vues

article

13.8 : Flottabilité

Mécanique des fluides

5.7K Vues

article

13.9 : Le principe d'Archimède

Mécanique des fluides

7.4K Vues

article

13.10 : Densité et poussée d'Archimède

Mécanique des fluides

6.4K Vues

article

13.11 : Fluides accélérateurs

Mécanique des fluides

944 Vues

article

13.13 : Excès de pression à l’intérieur d’une goutte et d’une bulle

Mécanique des fluides

1.5K Vues

article

13.14 : Contact Angle

Mécanique des fluides

11.3K Vues

article

13.15 : Remontée de liquide dans un tube capillaire

Mécanique des fluides

1.1K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.