Iniciar sesión

When a rigid body is hanging freely from a fixed pivot point and is displaced, it oscillates similar to a simple pendulum and is known as a physical pendulum. The period and angular frequency of a physical pendulum are obtained by using the small-angle approximation and drawing parallels with a spring-mass system. The small-angle approximation (sinθ=θ) is valid up to about 14°.

When dealing with complicated systems, the mass moment of inertia is an important parameter, as it describes the mass distribution around the pivot point. The moment of inertia is a measure of an object's resistance to rotational motion. For a pendulum with a complicated mass distribution, calculating the moment of inertia can be a difficult and time-consuming task. However, by using the center of mass framework, we can simplify this calculation significantly. The complicated mass distribution of the body and resultant mass moment of inertia gets simplified into two terms: the moment of inertia about the pivot point and the distance between the pivot point and the center of mass. This simplification shows the remarkable power of using the center of mass framework.

The case of a real physical pendulum can be shown to reduce to the idealized simple pendulum by using the expression for a simple pendulum's moment of inertia.

Physical pendulums have useful applications. In extreme conditions, skyscrapers can sway up to two meters with a frequency of up to 20 Hz due to high winds or seismic activity. Several companies have developed physical pendulums that are placed on the top of skyscrapers. As the skyscraper sways to the right, the pendulum swings to the left, reducing the sway.

Physical pendulums can also be used to measure acceleration due to gravity.

Tags
Physical PendulumRigid BodyPivot PointOscillationPeriodAngular FrequencySmall angle ApproximationMass Moment Of InertiaRotational MotionCenter Of Mass FrameworkMoment Of Inertia CalculationSkyscraper SwaySeismic ActivityGravity Measurement

Del capítulo 15:

article

Now Playing

15.10 : Physical Pendulum

Oscilaciones

1.5K Vistas

article

15.1 : Movimiento armónico simple

Oscilaciones

8.7K Vistas

article

15.2 : Características del movimiento armónico simple

Oscilaciones

10.5K Vistas

article

15.3 : Oscilaciones en torno a la posición de equilibrio

Oscilaciones

5.1K Vistas

article

15.4 : Energía en movimiento armónico simple

Oscilaciones

6.7K Vistas

article

15.5 : Frecuencia del sistema de resorte-masa

Oscilaciones

5.1K Vistas

article

15.6 : Movimiento armónico simple y movimiento circular uniforme

Oscilaciones

4.1K Vistas

article

15.7 : Resolución de problemas: energía en movimiento armónico simple

Oscilaciones

1.1K Vistas

article

15.8 : Péndulo simple

Oscilaciones

4.4K Vistas

article

15.9 : Péndulo torsional

Oscilaciones

5.1K Vistas

article

15.11 : Medición de la aceleración debida a la gravedad

Oscilaciones

453 Vistas

article

15.12 : Oscilaciones amortiguadas

Oscilaciones

5.5K Vistas

article

15.13 : Tipos de amortiguación

Oscilaciones

6.3K Vistas

article

15.14 : Oscilaciones forzadas

Oscilaciones

6.4K Vistas

article

15.15 : Concepto de Resonancia y sus Características

Oscilaciones

4.9K Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados