サインイン

When a rigid body is hanging freely from a fixed pivot point and is displaced, it oscillates similar to a simple pendulum and is known as a physical pendulum. The period and angular frequency of a physical pendulum are obtained by using the small-angle approximation and drawing parallels with a spring-mass system. The small-angle approximation (sinθ=θ) is valid up to about 14°.

When dealing with complicated systems, the mass moment of inertia is an important parameter, as it describes the mass distribution around the pivot point. The moment of inertia is a measure of an object's resistance to rotational motion. For a pendulum with a complicated mass distribution, calculating the moment of inertia can be a difficult and time-consuming task. However, by using the center of mass framework, we can simplify this calculation significantly. The complicated mass distribution of the body and resultant mass moment of inertia gets simplified into two terms: the moment of inertia about the pivot point and the distance between the pivot point and the center of mass. This simplification shows the remarkable power of using the center of mass framework.

The case of a real physical pendulum can be shown to reduce to the idealized simple pendulum by using the expression for a simple pendulum's moment of inertia.

Physical pendulums have useful applications. In extreme conditions, skyscrapers can sway up to two meters with a frequency of up to 20 Hz due to high winds or seismic activity. Several companies have developed physical pendulums that are placed on the top of skyscrapers. As the skyscraper sways to the right, the pendulum swings to the left, reducing the sway.

Physical pendulums can also be used to measure acceleration due to gravity.

タグ
Physical PendulumRigid BodyPivot PointOscillationPeriodAngular FrequencySmall angle ApproximationMass Moment Of InertiaRotational MotionCenter Of Mass FrameworkMoment Of Inertia CalculationSkyscraper SwaySeismic ActivityGravity Measurement

章から 15:

article

Now Playing

15.10 : Physical Pendulum

振動

1.5K 閲覧数

article

15.1 : シンプルハーモニックモーション

振動

8.7K 閲覧数

article

15.2 : 単純調和運動の特徴

振動

10.5K 閲覧数

article

15.3 : 平衡位置に関する振動

振動

5.1K 閲覧数

article

15.4 : 単純調和運動のエネルギー

振動

6.7K 閲覧数

article

15.5 : スプリングマスシステムの周波数

振動

5.1K 閲覧数

article

15.6 : 単純な調和運動と均一な円運動

振動

4.1K 閲覧数

article

15.7 : 問題解決:単純調和運動におけるエネルギー

振動

1.1K 閲覧数

article

15.8 : シンプル振り子

振動

4.4K 閲覧数

article

15.9 : ねじり振り子

振動

5.1K 閲覧数

article

15.11 : 重力による加速度の測定

振動

453 閲覧数

article

15.12 : 減衰振動

振動

5.5K 閲覧数

article

15.13 : ダンピングの種類

振動

6.3K 閲覧数

article

15.14 : 強制振動

振動

6.4K 閲覧数

article

15.15 : 共鳴の概念とその特性

振動

4.9K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved