Accedi

When a rigid body is hanging freely from a fixed pivot point and is displaced, it oscillates similar to a simple pendulum and is known as a physical pendulum. The period and angular frequency of a physical pendulum are obtained by using the small-angle approximation and drawing parallels with a spring-mass system. The small-angle approximation (sinθ=θ) is valid up to about 14°.

When dealing with complicated systems, the mass moment of inertia is an important parameter, as it describes the mass distribution around the pivot point. The moment of inertia is a measure of an object's resistance to rotational motion. For a pendulum with a complicated mass distribution, calculating the moment of inertia can be a difficult and time-consuming task. However, by using the center of mass framework, we can simplify this calculation significantly. The complicated mass distribution of the body and resultant mass moment of inertia gets simplified into two terms: the moment of inertia about the pivot point and the distance between the pivot point and the center of mass. This simplification shows the remarkable power of using the center of mass framework.

The case of a real physical pendulum can be shown to reduce to the idealized simple pendulum by using the expression for a simple pendulum's moment of inertia.

Physical pendulums have useful applications. In extreme conditions, skyscrapers can sway up to two meters with a frequency of up to 20 Hz due to high winds or seismic activity. Several companies have developed physical pendulums that are placed on the top of skyscrapers. As the skyscraper sways to the right, the pendulum swings to the left, reducing the sway.

Physical pendulums can also be used to measure acceleration due to gravity.

Tags
Physical PendulumRigid BodyPivot PointOscillationPeriodAngular FrequencySmall angle ApproximationMass Moment Of InertiaRotational MotionCenter Of Mass FrameworkMoment Of Inertia CalculationSkyscraper SwaySeismic ActivityGravity Measurement

Dal capitolo 15:

article

Now Playing

15.10 : Physical Pendulum

Oscillations

1.5K Visualizzazioni

article

15.1 : Moto armonico semplice

Oscillations

8.7K Visualizzazioni

article

15.2 : Caratteristiche del moto armonico semplice

Oscillations

10.5K Visualizzazioni

article

15.3 : Oscillazioni intorno a una posizione di equilibrio

Oscillations

5.1K Visualizzazioni

article

15.4 : Energia nel Moto Armonico Semplice

Oscillations

6.7K Visualizzazioni

article

15.5 : Frequenza del sistema molla-massa

Oscillations

5.1K Visualizzazioni

article

15.6 : Moto armonico semplice e moto circolare uniforme

Oscillations

4.1K Visualizzazioni

article

15.7 : Problem Solving: Energia in Moto Armonico Semplice

Oscillations

1.1K Visualizzazioni

article

15.8 : Pendolo semplice

Oscillations

4.4K Visualizzazioni

article

15.9 : Pendolo Torsionale

Oscillations

5.1K Visualizzazioni

article

15.11 : Misurazione dell'accelerazione dovuta alla gravità

Oscillations

453 Visualizzazioni

article

15.12 : Oscillazioni smorzate

Oscillations

5.5K Visualizzazioni

article

15.13 : Tipi di smorzamento

Oscillations

6.3K Visualizzazioni

article

15.14 : Oscillazioni forzate

Oscillations

6.4K Visualizzazioni

article

15.15 : Concetto di Risonanza e sue Caratteristiche

Oscillations

4.9K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati