Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to synthesize a complex organic compound comprised of three nonplanar polyaromatic units, assembled easily with reasonable yields.

Abstract

The main purpose of this video is to show 6 reaction steps of a convergent synthesis and prepare a complex molecule containing up to three nonplanar polyaromatic units, which are two corannulene moieties and a racemic hexahelicene linking them. The compound described in this work is a good host for fullerenes. Several common organic reactions, such as free-radical reactions, C-C coupling or click chemistry, are employed demonstrating the versatility of functionalization that this compound can accept. All of these reactions work for planar aromatic molecules. With subtle modifications, it is possible to achieve similar results for nonplanar polyaromatic compounds.

Introduction

Due to their special geometry, corannulene and helicenes are molecules that can adopt a structure far from planarity and give rise to interesting properties.1-15 In the last few years, the search of molecular receptors for carbon nanotubes and fullerenes is a very active area16-19 due, mainly, to their potential applications as materials for organic solar cells, transistors, sensors and other devices.20-28 The excellent complementarity in shape between corannulene and a fullerene have attracted the attention of several researchers with the aim of designing molecular receptors capable of establishing supramolecular association by disper....

Protocol

1. Functionalization of 2,15-Dimethylhexahelicene

  1. Dibromination of 2,15-dimethylhexahelicene
    1. Weigh 0.356 g (1.0 mmol) of 2,15-dimethylhexahelicene, 0.374 g (2.1 mmol) of freshly recrystallized N-bromosuccinimide (NBS) and 24 mg (0.07 mmol) of benzoyl peroxide (BPO) (70% wt with 30% of water as stabilizer). Place all solids in a 100 ml Schlenk flask with a magnetic stir bar. Put under nitrogen atmosphere by three cycles of gas evacuation followed by refill.......

Representative Results

Corannulene (3a) and 2,15-dimethylhexahelicene (3b) could be prepared following current methods46-48 in a straightforward fashion with very good yields (Figure 5). Both share a common molecule, 2,7-dimethylnaphthalene, as the starting material, giving rise to a divergent to convergent synthesis of the final molecule.

Discussion

Final compound 7 has been prepared after 6 steps from nonplanar polyaromatic precursors 3a and 3b with moderate to very good yields at each reaction. The main limitation observed in this route was the bromination of both nonplanar polyaromatic compounds. However, in the case of compound 4a, an important amount of free corannulene can be recovered for further uses. The synthesis of 4

Acknowledgements

This work was funded by the Spanish Ministerio de Economìa y Competitividad (CTQ 2013-41067-P). H.B. acknowledge with thanks a MEC-FPI grant.

....

Materials

NameCompanyCatalog NumberComments
2,15-DimethylhexaheliceneN/AN/APrepared according to reference 5b,c in the main text.
CorannuleneN/AN/APrepared according to reference 5a in the main text.
N-Bromosuccinimide (NBS)Sigma AldrichB8.125-5ReagentPlus®, 99%. Recrystallized from hot water.
Benzoyl peroxide (BPO)Sigma AldrichB-2030~70% (titration). 30% water as stabilizer.
Sodium azideSigma AldrichS2002ReagentPlus®, ≥99.5%.
Gold (III) chloride HydrateSigma Aldrich50778puriss. p.a., ACS reagent, ≥49% Au basis.
EthynyltrimethylsilaneSigma Aldrich21817098%.
[PdCl2(dppf)]N/AN/APrepared according to reference 6 in the main text.
CuIN/AN/APrepared according to reference 7 in the main text.
KFSigma Aldrich30759999%, spray-dried.
(+)-Sodium L-ascorbateFluka11140BioXtra, ≥99.0% (NT).
Copper(II) Sulphate 5-hydratePanreac131270for analysis.
Carbon tetrachloride (CCl4)Fluka87030for IR spectroscopy, ≥99.9%.
Dichloromethane (DCM)Fisher ScientificD/1852/25Analytical reagent grade. Distilled prior to use.
HexaneFisher ScientificH/0355/25Analytical reagent grade. Distilled prior to use.
Ethyl acetateScharlauAC0145025SReagent grade. Distilled prior to use.
Tetrahydrofuran (THF)Fisher ScientificT/0701/25Analytical reagent grade. Distilled prior to use.
1,2-Dichloroethane (DCE)Sigma AldrichD6,156-3ReagentPlus®, 99%.
Methanol (MeOH)VWR20847.36AnalaR NORMAPUR.
Triethyl amine (NEt3)Sigma AldrichT0886≥99%.
Silica gelAcros360050010Particle size 40-60mm.
Sand - low ironFisher ScientificS/0360/63General purpose grade.
TLC Silica gel 60 F254Merck1.05554.0001
Monowave 300 (Microwave reactor)Anton Para
SonicatorGrupo Selecta30005136 Litres.

References

  1. Scott, L. T., Hashemi, M. M., Bratcher, M. S. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114 (5), 1920-1921 (1992).
  2. Sygula, A., et al.

Explore More Articles

CorannuleneHexaheliceneCopper I catalyzed Alkyne azide CycloadditionNonplanar Polyaromatic UnitsClick ChemistryRadical ReactionsCarbon carbon CouplingDebrominationColumn Chromatography

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados