Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Este protocolo describe un proceso sencillo que utiliza convenientes micromoldes de plástico para operaciones simples de microestampado para fabricar microcanales en papel de celulosa nanofibrilado, logrando un ancho mínimo de 200 μm.
El nanopapel, derivado de la celulosa nanofibrilada, ha generado un interés considerable como material prometedor para aplicaciones microfluídicas. Su atractivo radica en una gama de excelentes cualidades, que incluyen una superficie excepcionalmente lisa, una transparencia óptica excepcional, una matriz de nanofibras uniforme con porosidad a nanoescala y propiedades químicas personalizables. A pesar del rápido crecimiento de la microfluídica basada en nanopapel, las técnicas actuales utilizadas para crear microcanales en nanopapel, como la impresión 3D, el recubrimiento por pulverización o el corte y ensamblaje manual, que son cruciales para las aplicaciones prácticas, todavía poseen ciertas limitaciones, en particular la susceptibilidad a la contaminación. Además, estos métodos se limitan a la producción de canales de tamaño milimétrico. Este estudio presenta un proceso sencillo que utiliza convenientes micromoldes de plástico para operaciones simples de microestampado para fabricar microcanales en nanopapel, logrando un ancho mínimo de 200 μm. El microcanal desarrollado supera los enfoques existentes, logrando una mejora de cuatro veces, y se puede fabricar en 45 minutos. Además, se han optimizado los parámetros de fabricación y se proporciona una cómoda tabla de referencia rápida para los desarrolladores de aplicaciones. Se demostró la prueba de concepto de un mezclador laminar, un generador de gotas y dispositivos analíticos funcionales basados en nanopapel (NanoPAD) diseñados para la detección de rodamina B mediante espectroscopía Raman mejorada en superficie. En particular, los NanoPAD mostraron un rendimiento excepcional con límites de detección mejorados. Estos excelentes resultados se pueden atribuir a las propiedades ópticas superiores del nanopapel y al método de microestampado preciso recientemente desarrollado, que permite la integración y el ajuste fino de los NanoPAD.
Recientemente, el papel de celulosa nanofibrilada (NFC) (nanopapel) ha surgido como un material de sustrato muy prometedor para diversas aplicaciones, como la electrónica flexible, los dispositivos energéticos y la biomedicina 1,2,3,4. Derivado de plantas naturales, el nanopapel es rentable, biocompatible y biodegradable, lo que lo convierte en una alternativa atractiva al papel de celulosa tradicional 5,6. Sus propiedades excepcionales incluyen una superficie ultralisa con una rugos....
1. Proceso de micrograbado para patrones de microcanales en nanopapel
Se ha ideado un método único para crear patrones de microcanales en nanopapel utilizando los prácticos micromoldes de plástico a través de la conveniente técnica de microestampado. En particular, este método logra patrones de microcanales a una escala tan pequeña como 200 μm, lo que representa una mejora de cuatro veces en comparación con los métodos existentes32,33,34. Después de ajustar los parámetros de patrones,.......
El objetivo principal de este estudio es desarrollar un método simple para fabricar microcanales en nanopapel. Se ideó una técnica de estampado eficiente utilizando PTFE como molde para abordar este desafío12. Al optimizar la temperatura y la presión de estampado, se llevaron a cabo una serie de experimentos para establecer un proceso de fabricación confiable para los NanoPAD. Además, se demostró el uso de una tabla de referencia rápida para ajustar las aplicaciones de los NanoPADs en dif.......
Los autores no tienen nada que revelar.
Los autores agradecen el apoyo financiero de los programas de la Fundación de Ciencias Naturales de la Educación Superior de Jiangsu (22KJB460033) y el Programa de Ciencia y Tecnología de Jiangsu - Young Scholar (BK20200251). Este trabajo también cuenta con el apoyo parcial del Centro de Investigación de la Universidad de IA XJTLU, el Centro de Investigación de Ingeniería de Ciencia de Datos y Computación Cognitiva de la Provincia de Jiangsu en XJTLU y la plataforma de innovación de IA SIP (YZCXPT2022103). También se reconoce el apoyo del Laboratorio Estatal Clave de Ingeniería de Sistemas de Fabricación a través del proyecto abierto (SKLMS2023019) y del Laboratorio C....
Name | Company | Catalog Number | Comments |
AgNO3 | Hushi (Shanghai, China) | 7761-88-8 | >99% |
Ethanol | Hushi (Shanghai, China) | 64-17-5 | >99% |
Hexadecane | Macklin (Shanghai, China) | 544-76-3 | >99% |
LabSpec software | Horiba (Japan) | LabSpec5 | |
Melamine | Macklin (Shanghai, China) | 108-78-1 | >99% |
NaBH4 | Aladdin (Shanghai, China) | 16940-66-2 | >99% |
Origin lab software | OriginLab (USA) | ||
Polyethylene terephthalate (PET) | Myers Industries (Akron, USA) | ||
Polytetrafluoroethylene films | Shenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China) | Teflon film | |
PVDF filter membrane | EMD Millipore Corporation (USA) | VVLP04700 | pore size: 0.1 μm |
Raman spectrometer | Horiba (Japan) | Xplo RA | |
Rhodamine B | Macklin (Shanghai, China) | 81-88-9 | >95% |
Scanning electron microscopy (SEM) | FEI(USA) | Scios 2 HiVac | |
Silicon wafer | Horiba (Japan) | diameter: 5 mm | |
TEMPO-oxidized NFC slurry | Tianjin University of Science and Technology | 1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados