É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Este protocolo descreve um processo simples que utiliza micromoldes plásticos convenientes para operações simples de microgravação para fabricar microcanais em papel celulose nanofibrilada, atingindo uma largura mínima de 200 μm.
O nanopapel, derivado da celulose nanofibrilada, tem gerado considerável interesse como um material promissor para aplicações microfluídicas. Seu apelo reside em uma gama de excelentes qualidades, incluindo uma superfície excepcionalmente lisa, excelente transparência óptica, uma matriz de nanofibras uniforme com porosidade em nanoescala e propriedades químicas personalizáveis. Apesar do rápido crescimento da microfluídica à base de nanopapel, as técnicas atuais usadas para criar microcanais em nanopapel, como impressão 3D, revestimento por spray ou corte e montagem manual, que são cruciais para aplicações práticas, ainda possuem certas limitações, notadamente a suscetibilidade à contaminação. Além disso, esses métodos são restritos à produção de canais de tamanho milimétrico. Este estudo introduz um processo simples que utiliza micromoldes plásticos convenientes para operações simples de microgravação para fabricar microcanais em nanopapel, alcançando uma largura mínima de 200 μm. O microcanal desenvolvido supera as abordagens existentes, alcançando uma melhoria de quatro vezes, e pode ser fabricado em 45 minutos. Além disso, os parâmetros de fabricação foram otimizados e uma conveniente tabela de referência rápida é fornecida para desenvolvedores de aplicativos. A prova de conceito para um misturador laminar, gerador de gotículas e dispositivos analíticos funcionais baseados em nanopapel (NanoPADs) projetados para detecção de Rodamina B usando espectroscopia Raman aprimorada por superfície foi demonstrada. Notavelmente, os NanoPADs exibiram desempenho excepcional com limites de detecção aprimorados. Esses resultados excepcionais podem ser atribuídos às propriedades ópticas superiores do nanopapel e ao método de microgravação preciso recentemente desenvolvido, permitindo a integração e o ajuste fino dos NanoPADs.
Recentemente, o papel de celulose nanofibrilada (NFC) (nanopaper) tem emergido como um substrato altamente promissor para diversas aplicações, tais como eletrônica flexível, dispositivos de energia e biomédicos 1,2,3,4. Derivado de plantas naturais, o nanopapel é econômico, biocompatível e biodegradável, tornando-se uma alternativa atraente ao papel celulósico tradicional 5,6. Suas propriedades excepcionais incluem uma superfície ultralisa com rugosidade superficial inferior a 25 nm e uma estrutura de matriz de celulose densa, permitindo a criação de nanoestruturas altamente estruturadas7. Abundantes grupos hidroxila de nanopapel contribuem para sua estrutura de nanocelulose compacta e firmemente embalada8. O nanopaper exibe excelente transparência óptica e mínima neblina óptica, tornando-o adequado para sensores ópticos. Além disso, sua hidrofilicidade inerente permite escoamento livre de bombas, mesmo com sua estrutura espessa, proporcionando movimentação autônoma de fluidos 9,10. A nanocelulose tem diversas aplicações em sensores biológicos, dispositivos eletrônicos condutores, plataformas de cultura celular, supercapacitores, baterias, entre outros, mostrando sua versatilidade e potencial11,12. Particularmente, a nanocelulose é promissora para dispositivos microfluídicos analíticos baseados em papel (μPADs), oferecendo vantagens únicas em relação ao papel de cromatografia convencional.
Na última década, os μPADs têm recebido atenção significativa devido ao seu preço acessível, biocompatibilidade, operação livre de bomba e facilidade de produção13,14. Esses dispositivos têm emergido como ferramentas diagnósticas efetivas no local de atendimento, particularmente em ambientes com recursos limitados15,16,17. Um avanço significativo nesse campo foi o desenvolvimento da impressão em cera, pioneira por George Whitesides18 e pelo grupo Bingcheng Lin19, possibilitando a criação de μPADs funcionais por meio da incorporação de microcanais em papel cromatográfico. Posteriormente, os μPADs evoluíram rapidamente, e várias técnicas de biosensoriamento, incluindo métodos eletroquímicos20, quimioluminescência21 e ensaio imunoenzimático (ELISA)22,23,24, foram implementadas com sucesso para a detecção de diversos biomarcadores, como proteínas25,26, DNAs27,28, RNAs29,30, e Exossomos31. Apesar dessas conquistas, os μPADs ainda enfrentam desafios, incluindo velocidades de fluxo lentas e evaporação de solventes.
Vários métodos têm sido propostos para a criação de microcanais em nanopapel32,33,34. Uma abordagem envolve a impressão 3D de ingredientes sacrificiais no material, mas requer um revestimento hidrofóbico que limita a operação livre de bomba33. Outra técnica envolve o empilhamento manual de camadas de canais entre folhas de nanopapel usando cola, o que é trabalhoso32. Alternativamente, fibras de nanocelulose com revestimento por spray em moldes pré-padronizados podem criar microcanais, mas envolve a preparação de moldes demorada e cara34. Notavelmente, esses métodos são limitados a microcanais em escala milimétrica, comprometendo as vantagens dos dispositivos microfluídicos em relação ao consumo e integração do volume de reagentes. Desenvolver um processo simples de padronização de microcanais de nanopapel com resolução em escala micrométrica continua sendo um desafio.
Este estudo apresenta um método único de padronização de microcanais de nanopapel baseado em microgravação prática. A abordagem oferece várias vantagens sobre os métodos existentes, pois não requer equipamentos caros ou especializados, é simples, econômica e altamente precisa. Um molde convexo de microcanal é fabricado por corte a laser de um filme de politetrafluoretileno (PTFE), conhecido por sua inércia química e propriedades antiaderentes. Este molde é então usado para gravar microcanais em uma membrana de gel de nanopapel. Uma segunda camada de gel de nanopapel é aplicada na parte superior para criar canais ocos fechados. Usando esta técnica de padronização, dispositivos microfluídicos fundamentais em nanopapel são desenvolvidos, incluindo um misturador laminar e um gerador de gotículas. Além disso, a fabricação de NanoPADs de microscopia Raman aprimorada por superfície (SERS) é demonstrada. A criação in situ de um substrato SERS baseado em nanopartículas de prata é obtida pela introdução de dois reagentes químicos (AgNO3 e NaBH4) nos canais, resultando em um desempenho notável com baixos limites de detecção (LODs).
1. Processo de microgravação para padronização de microcanais em nanopapel
2. Construção de dispositivos microfluídicos fundamentais
3. Crescimento in situ da AgNP
4. Medição de SERS
Um método único para criar padrões de microcanais em nanopapel foi desenvolvido utilizando os práticos micromoldes de plástico através da conveniente técnica de microgravação. Notadamente, esse método realiza padronização de microcanais em uma escala tão pequena quanto 200 μm, o que representa uma melhora de quatro vezes em relação aos métodos existentes32,33,34. Após o ajuste fino dos parâmetros de padroniza?...
O foco principal deste estudo é desenvolver um método simples para a fabricação de microcanais em nanopapel. Uma eficiente técnica de gravação em relevo foi desenvolvida usando PTFE como molde para enfrentar esse desafio12. Otimizando a temperatura e a pressão de gravação, uma série de experimentos foi conduzida para estabelecer um processo de fabricação confiável para NanoPADs. Adicionalmente, foi demonstrado o uso de uma tabela de referência rápida para ajustar as aplicações de...
Os autores não têm nada a revelar.
Os autores agradecem o apoio financeiro dos programas da Fundação de Ciências Naturais do Ensino Superior de Jiangsu (22KJB460033) e do Programa de Ciência e Tecnologia de Jiangsu - Jovem Acadêmico (BK20200251). Este trabalho também é parcialmente apoiado pelo Centro de Pesquisa da Universidade XJTLU AI, Centro de Pesquisa de Engenharia da Província de Jiangsu de Ciência de Dados e Computação Cognitiva na XJTLU e plataforma de inovação SIP AI (YZCXPT2022103). Também é reconhecido o apoio do Laboratório Chave Estadual para Engenharia de Sistemas de Manufatura via projeto aberto (SKLMS2023019) e do Laboratório Chave de Engenharia Biônica, Ministério da Educação.
Name | Company | Catalog Number | Comments |
AgNO3 | Hushi (Shanghai, China) | 7761-88-8 | >99% |
Ethanol | Hushi (Shanghai, China) | 64-17-5 | >99% |
Hexadecane | Macklin (Shanghai, China) | 544-76-3 | >99% |
LabSpec software | Horiba (Japan) | LabSpec5 | |
Melamine | Macklin (Shanghai, China) | 108-78-1 | >99% |
NaBH4 | Aladdin (Shanghai, China) | 16940-66-2 | >99% |
Origin lab software | OriginLab (USA) | ||
Polyethylene terephthalate (PET) | Myers Industries (Akron, USA) | ||
Polytetrafluoroethylene films | Shenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China) | Teflon film | |
PVDF filter membrane | EMD Millipore Corporation (USA) | VVLP04700 | pore size: 0.1 μm |
Raman spectrometer | Horiba (Japan) | Xplo RA | |
Rhodamine B | Macklin (Shanghai, China) | 81-88-9 | >95% |
Scanning electron microscopy (SEM) | FEI(USA) | Scios 2 HiVac | |
Silicon wafer | Horiba (Japan) | diameter: 5 mm | |
TEMPO-oxidized NFC slurry | Tianjin University of Science and Technology | 1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoExplore Mais Artigos
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados