Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Dieses Protokoll beschreibt ein unkompliziertes Verfahren, bei dem praktische Kunststoff-Mikroformen für einfache Mikroprägevorgänge verwendet werden, um Mikrokanäle auf nanofibrilliertem Zellulosepapier herzustellen, wobei eine Mindestbreite von 200 μm erreicht wird.
Nanopapier, das aus nanofibrillierter Zellulose gewonnen wird, hat als vielversprechendes Material für mikrofluidische Anwendungen großes Interesse geweckt. Seine Attraktivität liegt in einer Reihe hervorragender Eigenschaften, darunter eine außergewöhnlich glatte Oberfläche, eine hervorragende optische Transparenz, eine gleichmäßige Nanofasermatrix mit nanoskaliger Porosität und anpassbare chemische Eigenschaften. Trotz des rasanten Wachstums der Mikrofluidik auf Nanopapierbasis weisen die derzeit verwendeten Techniken zur Herstellung von Mikrokanälen auf Nanopapier, wie z. B. 3D-Druck, Sprühbeschichtung oder manuelles Schneiden und Montieren, die für praktische Anwendungen von entscheidender Bedeutung sind, immer noch bestimmte Einschränkungen auf, insbesondere die Anfälligkeit für Kontaminationen. Darüber hinaus beschränken sich diese Verfahren auf die Herstellung von millimetergroßen Kanälen. In dieser Studie wird ein unkompliziertes Verfahren vorgestellt, bei dem praktische Kunststoff-Mikroformen für einfache Mikroprägevorgänge verwendet werden, um Mikrokanäle auf Nanopapier herzustellen, wobei eine Mindestbreite von 200 μm erreicht wird. Der entwickelte Mikrokanal übertrifft bestehende Ansätze, erreicht eine vierfache Verbesserung und kann innerhalb von 45 Minuten hergestellt werden. Darüber hinaus wurden die Fertigungsparameter optimiert und eine praktische Kurzreferenztabelle für Anwendungsentwickler bereitgestellt. Der Proof-of-Concept für einen laminaren Mischer, einen Tröpfchengenerator und funktionelle Nanopapier-basierte Analysegeräte (NanoPADs) für die Rhodamin-B-Sensorik mittels oberflächenverstärkter Raman-Spektroskopie wurde demonstriert. Bemerkenswert ist, dass die NanoPADs eine außergewöhnliche Leistung mit verbesserten Nachweisgrenzen aufwiesen. Diese herausragenden Ergebnisse sind auf die überlegenen optischen Eigenschaften von Nanopapier und die kürzlich entwickelte präzise Mikroprägemethode zurückzuführen, die die Integration und Feinabstimmung der NanoPADs ermöglicht.
In jüngster Zeit hat sich nanofibrilliertes Zellulosepapier (NFC) (Nanopapier) als vielversprechendes Substratmaterial für verschiedene Anwendungen wie flexible Elektronik, Energiegeräte und biomedizinische Geräte herausgestellt 1,2,3,4. Nanopapier wird aus natürlichen Pflanzen gewonnen und ist kostengünstig, biokompatibel und biologisch abbaubar, was es zu einer attraktiven Alternative zu herkömmlichem Zellulosepapier macht 5,6. Zu seinen außergewöhnlichen Eigenschaften gehören eine....
1. Mikroprägeverfahren zur Mikrokanalstrukturierung auf Nanopapier
Es wurde eine einzigartige Methode zur Erstellung von Mikrokanalmustern auf Nanopapier entwickelt, bei der die praktischen Kunststoff-Mikroformen durch die praktische Mikroprägetechnik verwendet werden. Bemerkenswert ist, dass mit dieser Methode eine Mikrokanalstrukturierung in einem Maßstab von nur 200 μm erreicht wird, was eine vierfache Verbesserung im Vergleich zu bestehenden Methoden darstellt32,33,34. Nach der Feinabsti.......
Das Hauptaugenmerk dieser Studie liegt auf der Entwicklung einer einfachen Methode zur Herstellung von Mikrokanälen auf Nanopapier. Es wurde eine effiziente Prägetechnik entwickelt, bei der PTFE als Form verwendet wurde, um diese Herausforderung zu bewältigen12. Durch die Optimierung der Temperatur und des Prägedrucks wurde eine Reihe von Experimenten durchgeführt, um einen zuverlässigen Herstellungsprozess für NanoPADs zu etablieren. Darüber hinaus wurde die Verwendung einer Schnellrefere.......
Die Autoren haben nichts zu verraten.
Die Autoren bedanken sich für die finanzielle Unterstützung durch die Programme der Natural Science Foundation of the Jiangsu Higher Education (22KJB460033) und des Jiangsu Science and Technology Programme - Young Scholar (BK20200251). Diese Arbeit wird teilweise auch vom XJTLU AI University Research Centre, dem Jiangsu Province Engineering Research Centre of Data Science and Cognitive Computation am XJTLU und der SIP AI Innovation Platform (YZCXPT2022103) unterstützt. Die Unterstützung durch das State Key Laboratory for Manufacturing Systems Engineering im Rahmen des offenen Projekts (SKLMS2023019) und das Key Laboratory of Bionic Engineering des Bildungsministeriums....
Name | Company | Catalog Number | Comments |
AgNO3 | Hushi (Shanghai, China) | 7761-88-8 | >99% |
Ethanol | Hushi (Shanghai, China) | 64-17-5 | >99% |
Hexadecane | Macklin (Shanghai, China) | 544-76-3 | >99% |
LabSpec software | Horiba (Japan) | LabSpec5 | |
Melamine | Macklin (Shanghai, China) | 108-78-1 | >99% |
NaBH4 | Aladdin (Shanghai, China) | 16940-66-2 | >99% |
Origin lab software | OriginLab (USA) | ||
Polyethylene terephthalate (PET) | Myers Industries (Akron, USA) | ||
Polytetrafluoroethylene films | Shenzhen Huashenglong plastic material Co., Ltd. (Shenzhen, China) | Teflon film | |
PVDF filter membrane | EMD Millipore Corporation (USA) | VVLP04700 | pore size: 0.1 μm |
Raman spectrometer | Horiba (Japan) | Xplo RA | |
Rhodamine B | Macklin (Shanghai, China) | 81-88-9 | >95% |
Scanning electron microscopy (SEM) | FEI(USA) | Scios 2 HiVac | |
Silicon wafer | Horiba (Japan) | diameter: 5 mm | |
TEMPO-oxidized NFC slurry | Tianjin University of Science and Technology | 1.0 wt% solid, carboxylate level 2.0 mmol/g solid, average nanofiber diameter: 10 nm |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten