A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this study, nerve-mimetic composite hydrogels were developed and characterized that can be utilized to investigate and capitalize on the pro-regenerative behavior of adipose-derived stem cells for spinal cord injury repair.
Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. It affects approximately a quarter million people in the US, and it represents an immeasurable public health concern. Research has been conducted to provide effective therapy; however, SCI is still considered incurable due to the complex nature of the injury site. A variety of strategies, including drug delivery, cell transplantation, and injectable biomaterials, are investigated, but one strategy alone limits their efficacy for regeneration. As such, combinatorial therapies have recently gained attention that can target multifaceted features of the injury. It has been shown that extracellular matrices (ECM) may increase the efficacy of cell transplantation for SCI. To this end, 3D hydrogels consisting of decellularized spinal cords (dSCs) and sciatic nerves (dSNs) were developed at different ratios and characterized. Histological analysis of dSCs and dSNs confirmed the removal of cellular and nuclear components, and native tissue architectures were retained after decellularization. Afterward, composite hydrogels were created at different volumetric ratios and subjected to analyses of turbidity gelation kinetics, mechanical properties, and embedded human adipose-derived stem cell (hASC) viability. No significant differences in mechanical properties were found among the different ratios of hydrogels and decellularized spinal cord matrices. Human ASCs embedded in the gels remained viable throughout the 14-day culture. This study provides a means of generating tissue-engineered combinatorial hydrogels that present nerve-specific ECM and pro-regenerative mesenchymal stem cells. This platform can provide new insights into neuro-regenerative strategies after SCI with future investigations.
Approximately 296,000 people are suffering from traumatic SCI, and every year there are about 18,000 new SCI cases occurring in the U.S.A.1. Traumatic SCI is commonly caused by falls, gunshot wounds, vehicle accidents, and sports activities and often causes permanent loss of sensorimotor function below the site of injury. The estimated lifetime expenses for SCI treatment range between one to five million dollars per individual with significantly lower life expectancies1. Yet, SCI is still poorly understood and largely incurable, mainly due to complex pathophysiological consequences after the injury....
The porcine tissues were commercially obtained, so approval was not required by the animal ethics committee.
1. Decellularization of porcine spinal cords (Estimated time: 5 days)
NOTE: Perform the decellularization using previously established protocols with modifications25,26. All procedures should be done in a sterile biosafety cabinet at room temperature unless stated otherwise. All solutio.......
Decellularized tissues were prepared using previously established protocols with slight modifications26,27. After decellularization, lyophilization, and digestion, nerve composite hydrogels at ratios of SN:SC = 2:1, 1:1, 1:2, and spinal cord-only hydrogels were fabricated (Figure 1). Removal of nuclear components was confirmed by H&E staining (Figure 2A). To quantitatively assess the decellularizatio.......
It is widely believed that the pathophysiology of SCI is complex and multifaceted. Even though single therapies such as cell transplantation, drug delivery, and biomaterials each have provided valuable insights into SCI, the complicated nature of SCI may limit their individual efficacy28,29,30,31. Therefore, efforts to develop effective combinatorial therapeutics have increased. The nerve compo.......
This work was supported by the PhRMA Foundation and the National Institutes of Health through the award number P20GM139768 and R15NS121884 awarded to YS. We want to thank Dr. Kartik Balachandran and Dr. Raj Rao in the Department of Biomedical Engineering at the University of Arkansas for letting us use their equipment. Also, we want to thank Dr. Jin-Woo Kim and Mr. Patrick Kuczwara from the Department of Biological and Agricultural Engineering at the University of Arkansas for providing training on rheometer.
....Name | Company | Catalog Number | Comments |
3-(Decyldimethylammonio)propane sulfonate inner salt | Sigma-Aldrich | D4266 | Used during sciatic nerve decellularization, SB-10 |
3-(N,N-Dimethylpalmitylammonio)propane sulfonate | Sigma-Aldrich | H6883 | Used during sciatic nerve decellularization, SB-16 |
AlamarBlue reagent | Fisher Scientific | DAL1100 | Used during AlamaBlue cell viabiiltiy test |
Chondroitinase ABC | Sigma-Aldrich | C3667 | Used during sciatic nerve decellularization |
Cryostat | Leica | CM1860 | |
Deoxyribonuclase | Sigma-Aldrich | D4263 | Used during sciatic nerve decellularization |
Disodium hydrogen phosphate heptahydrate | VWR | BDH9296 | Chemical for 100 mM Na/50 mM phos and 50 mM Na/10 mM phos buffer |
DNeasy Blood & Tissue kit | Qiagen | 69506 | Used during DNA analysis |
Dpx Mountant for histology,slide mounting medium | Sigma-Aldrich | 6522 | Used during H&E staining |
Eosin | Sigma-Aldrich | HT110216 | Used during H&E staining |
Ethanol | VWR | 89125-172 | |
Formaldehyde | Sigma-Aldrich | 252549 | Used during H&E staining |
Glutaraldehyde (GA) | Sigma-Aldrich | G6257 | Used during PDMS surface functionalization |
hASC growth media | Lonza | PT-4505 | Used to culture hASCs, containing of fetal bovine serum and penicilin/streptomycin |
Hematoxylin | VWR | 26041-06 | Used during H&E staining |
human adipose-derived stem cell | Lonza | PT-5006 | |
Hydrochloric acid (HCl) | Sigma-Aldrich | 320331 | Used to digest decellularizied tissues and adjust pregels solutions |
M199 media | Sigma-Aldrich | M0650 | Used to dilute pregels to desired concentration |
Optimal cutting temperatue compound | Tissue-Tek | 4583 | |
Pepsin | Sigma-Aldrich | P7000 | Used to digest decellularized tissues |
Peracetic acid | Lab Alley | PAA1001 | Used during spinal cord decellularization |
Phosphate buffered saline (PBS) | VWR | 97062-948 | |
Plate reader | BioTek Instruments | Synergy Mx | |
Polyethyleneimine (PEI) | Sigma-Aldrich | 181978 | Used during PDMS surface functionalization |
Porcine sciatic nerve | Tissue Source LLC | Live pigs, with no identifiable information and no traceability details | |
Porcine spinal cord | Tissue Source LLC | Live pigs, with no identifiable information and no traceability details | |
QuantiFluor dsDNA system | Promega | E2670 | Used to analyze DNA contents |
Rheometer | TA Instruments | DHR 2 | |
Rugged rotator | Glas-co | 099A RD4512 | Used during spinal cord decellularization |
Sodium chloride (NaCl) | VWR | BDH9286 | Chemical for 100 mM Na/50 mM phos and 50 mM Na/10 mM phos buffer |
sodium deoxycholate | Sigma-Aldrich | D6750 | |
Sodium dihydrogen phosphate monohydrate | VWR | BDH9298 | Chemical for 100 mM Na/50 mM phos and 50 mM Na/10 mM phos buffer |
Sodium hydroxide solution (NaOH) | Sigma-Aldrich | 415443 | Used to adjust pregels solutions |
SU-8 | Kayaku advnaced materials | SU8-100 | Used to coat silicon wafer |
Sucrose | Sigma-Aldrich | S8501 | Used during spinal cord decellularization |
Sylgard 184 silicone elastomer kit | DOW | 1317318 | Polydimethylxiloxane (PDMS) base and curing agent |
Triton X-100 | Sigma-Aldrich | X100 | Used during spinal cord decellularization |
Trypsin-EDTA (0.05%), phenol red | Thermo Fisher | 25300062 | Used during hASC work and during spinal cord decellularization |
Tube revolver rotator | Thermo Fisher | 88881001 | Used during sciatic nerve decellularization |
Xylene | VWR | MK866816 | Used during H&E staining |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved