Infrared nerve stimulation has been proposed as an alternative to electrical stimulation in a range of nerve types, including those associated with the auditory system. This protocol describes a patch clamp method for studying the mechanism of infrared nerve stimulation in a culture of primary auditory neurons.
This protocol outlines how to use the transient heating associated with the optical absorption of gold nanorods to stimulate differentiation and intracellular calcium activity in neuronal cells. These results potentially open up new applications in neural prostheses and fundamental studies in neuroscience.
Two types of surfaces, polyester-coated steel and polyester coated with a layer of silica nanoparticles, were studied. Both surfaces were exposed to sunlight, which was found to cause substantial changes in the chemistry and nanoscale topography of the surface.
We describe an experiment designed to probe the electronic damage induced in nanocrystals of Buckminsterfullerene (C60) by intense, femtosecond pulses of X-rays. The experiment found that, surprisingly, rather than being stochastic, the X-ray induced electron dynamics in C60 are highly correlated, extending over hundreds of unit cells within the crystals1.
Simultaneous magnetoencephalography and electroencephalography provides a useful tool to search for common and distinct macro-scale mechanisms of reductions in consciousness induced by different anesthetics. This paper illustrates the empirical methods underlying the recording of such data from healthy humans during N-Methyl-D-Aspartate-(NMDA)-receptor-antagonist-based anesthesia during inhalation of nitrous oxide and xenon.
Antibodies that bind to target receptors on the cell surface can confer conformation and clustering alterations. These dynamic changes have implications for characterizing drug development in target cells. This protocol utilizes confocal microscopy and image correlation spectroscopy through ImageJ/FIJI to quantify the extent of receptor clustering on the cell surface.
A protocol is presented for the practical generation and coherent manipulation of high-dimensional frequency-bin entangled photon states using integrated micro-cavities and standard telecommunications components, respectively.
The objective of the protocol is to detail how to collect video data for use in the laboratory; how to record eye-tracking data of participants looking at the data and how to efficiently analyze the content of the videos that they were looking at using a machine learning technique.
A method for transcriptome profiling of cereals is presented. The microarray-based gene expression profiling starts with the isolation of high-quality total RNA from cereal grains and continues with the generation of cDNA. After cRNA labelling and microarray hybridization, recommendations are given for signal detection and quality control.