S'identifier

Dartmouth-Hitchcock Medical Center

9 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Olfactory Behaviors Assayed by Computer Tracking Of Drosophila in a Four-quadrant Olfactometer
Chun-Chieh Lin 1, Olena Riabinina 2, Christopher J. Potter 1
1The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 2MRC Clinical Sciences Center, Imperial College London

We describe here a behavioral setup and data analysis method for assaying olfactory responses of up to 100 vinegar flies (Drosophila melanogaster). This system may be used with single or multiple olfactory stimuli, and adaptable for optogenetic activation or silencing of neuronal subsets.

image

Neuroscience

Measuring Progressive Neurological Disability in a Mouse Model of Multiple Sclerosis
Francesca Gilli 1, Darlene B. Royce 1, Andrew R. Pachner 1
1Department of Neurology, Geisel School of Medicine at Dartmouth

An optimized testing protocol is presented in this paper for the Rotarod performance test, used for measuring progressive neurological disability in TMEV-infected mice.

image

Neuroscience

Large-scale Reconstructions and Independent, Unbiased Clustering Based on Morphological Metrics to Classify Neurons in Selective Populations
Elise M. Bragg 1, Farran Briggs 1
1Physiology & Neurobiology, Geisel School of Medicine at Dartmouth

This protocol describes large-scale reconstructions of selective neuronal populations, labeled following retrograde infection with a modified rabies virus expressing fluorescent markers, and independent, unbiased cluster analyses that enable comprehensive characterization of morphological metrics among distinct neuronal subclasses.

image

Immunology and Infection

Highly Multiplexed, Super-resolution Imaging of T Cells Using madSTORM
Jason Yi 1, Asit Manna 1, Valarie A. Barr 1, Jennifer Hong 2, Keir C. Neuman 2, Lawrence E. Samelson 1
1Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health, 2Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood, Institute, National Institutes of Health

We demonstrate a method to image multiple molecules within heterogeneous nano-structures at single molecule accuracy using sequential binding and elution of fluorescently labeled antibodies.

image

Neuroscience

Quantitative Measurement of Intrathecally Synthesized Proteins in Mice
Francesca Gilli 1, Nora C. Welsh 1,2, Michael R. Linzey 1,2, Darlene B. Royce 1, Krista D. DiSano 1, Andrew R. Pachner 1
1Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, 2Program in Experimental and Molecular Medicine, Dartmouth College

Elevated spinal fluid protein levels can either be the result of diffusion of plasma protein across an altered blood-brain barrier or intrathecal synthesis. An optimized testing protocol is presented in this article that helps to discriminate both cases and provides quantitative measurements of intrathecally synthesized proteins.

image

Immunology and Infection

Isolating Central Nervous System Tissues and Associated Meninges for the Downstream Analysis of Immune cells
Krista D. DiSano 1, Michael R. Linzey 1,2, Nora C. Welsh 1,2, Joshua S. Meier 1, Andrew R. Pachner 1, Francesca Gilli 1
1Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, 2Program in Experimental and Molecular Medicine, Dartmouth College

This paper presents two optimized protocols for examining resident and peripherally derived immune cells within the central nervous system, including the brain, spinal cord, and meninges. Each of these protocols helps to ascertain the function and composition of the cells occupying these compartments under steady state and inflammatory conditions.

image

Neuroscience

Acquisition of Resting-State Functional Magnetic Resonance Imaging Data in the Rat
Diana J. Wallin *1,2, Emily D. K. Sullivan *1,2, Elise M. Bragg 1, Jibran Y. Khokhar 2,4, Hanbing Lu 2,3, Wilder T. Doucette 1,2
1Dartmouth-Hitchcock Medical Center, 2Geisel School of Medicine at Dartmouth, 3National Institute on Drug Abuse, National Institutes of Health, 4University of Guelph

This protocol describes a method for obtaining stable resting-state functional magnetic resonance imaging (rs-fMRI) data from a rat using low dose isoflurane in combination with low dose dexmedetomidine.

image

Cancer Research

Digital Spatial Profiling for Characterization of the Microenvironment in Adult-Type Diffusely Infiltrating Glioma
Nishika Karbhari 1, Rachael Barney 2, Scott Palisoul 2, Jennifer Hong 3, Chun-Chieh Lin 2, George Zanazzi 2,4
1Department of Neurology, Dartmouth-Hitchcock Medical Center, 2Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 3Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, 4Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center

Proteomic dysregulation plays an important role in the spread of diffusely infiltrating gliomas, but several relevant proteins remain unidentified. Digital spatial processing (DSP) offers an efficient, high-throughput approach for characterizing the differential expression of candidate proteins that may contribute to the invasion and migration of infiltrative gliomas.

image

Medicine

Point-Of-Care Ultrasound Screening for Proximal Lower Extremity Deep Venous Thrombosis
Rebecca G. Theophanous 1, Vinca W. Chow 2, David L. Convissar 3, Stephen C. Haskins 4,5, Robert A. Jones 6, Hari K. P. Kalagara 7, Yuriy S. Bronshteyn 8
1Department of Emergency Medicine, Duke University School of Medicine, 2Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, 3Department of Anesthesiology, Massachusetts General Hospital, 4Department of Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, 5Department of Anesthesiology, Weill-Cornell Medical College, 6Department of Emergency Medicine, MetroHealth Medical Center/Case Western Reserve University, 7Department of Anesthesiology, Mayo Clinic, 8Department of Anesthesiology, Duke University School of Medicine

Traditionally, lower extremity deep venous thrombosis (DVT) is diagnosed by radiology-performed venous duplex ultrasound. Providers appropriately trained in focused point-of-care ultrasound (POCUS) can perform a rapid bedside examination with high sensitivity and specificity in critically ill patients. We describe the scanning technique for focused POCUS DVT lower extremity examination.

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2024 MyJoVE Corporation. Tous droits réservés.