Methods for bioluminescence imaging of bacterial infections in living animals are decribed. Pathogens are modified to express luciferase allowing optical whole body imaging of infections in live animals. Animal models can be infected with luciferase expressing pathogens and the resulting course of disease visualized in real-time by bioluminescence imaging.
We describe the optical imaging of mice infected with Mycobacterium tuberculosis (M. tuberculosis) using reporter enzyme fluorescence (REF). This protocol facilitates the sensitive and specific detection of M. tuberculosis in pre-clinical animal models for pathogenesis, therapeutics and vaccine research.
Optical tissue phantoms are essential tools for calibration and characterization of optical imaging systems and validation of theoretical models. This article details a method for phantom fabrication that includes replication of tissue optical properties and three-dimensional tissue structure.