Individuals with intermittent claudication exhibit poor balance compared to healthy controls. Computerized dynamic posturography is an objective method for measuring an individual's postural responses to balance disturbances. This provides an objective reflection of the person’s ability to respond to situations under which sensory stimuli are altered and unexpected perturbations occur.
Here we explain a protocol for modelling the biophysical microenvironment where crosslinking and increased stiffness of the basement membrane (BM) induced by advanced glycation endproducts (AGEs) has pathological relevance.
A protocol for producing a large area of nanopatterned substrate from small nanopatterned molds for study of nanotopographical modulation of cell behavior is presented.
This protocol demonstrates murine islet isolation and seeding onto a decellularized scaffold. Scaffold-supported islets were transplanted into the epididymal fat pad of streptozotocin (STZ)-induced diabetic mice. Islets survived at the transplantation site and reversed the hyperglycemic condition.
Here, we present a modified electrospinning method to fabricate PCL vascular grafts with thick fibers and large pores, and describe a protocol to evaluate the in vivo performance in a rat model of abdominal aorta replacement.
High-intensity femtosecond pulses of laser light can undergo cycles of Kerr self-focusing and plasma defocusing, propagating an intense sub-millimeter-diameter beam over long distances. We describe a technique for generating and using these filaments to perform remote imaging and sensing beyond the classical diffraction limits of linear optics.
A gentle touch-force loading machine is built from human hair brushes, robotic arms and a controller. The hair brushes are driven by robotic arms installed on the machine and move periodically to apply touch-force on plants. The strength of machine-driven hair touches is comparable to that of manually applied touches.
Here we demonstrate an optimized technique for assessing wound repair using ex vivo human skin combined with a whole-mount staining approach. This methodology provides a pre-clinical platform for the evaluation of potential wound therapies.
The generation of superoxide anion is essential for the stimulation of platelets and, if dysregulated, critical for thrombotic diseases. Here, we present three protocols for the selective detection of superoxide anions and the study of redox-dependent platelet regulation.