A tissue preparation is described for visualization and experimental manipulation of the living microcirculation. In anesthetized male mice, the thin, highly vascularized cremaster muscle is prepared for intravital microscopy to study microvascular networks including arterioles, capillaries and venules. This preparation is readily adapted for rats and hamsters.
Microiontophoresis entails movement of ions from a micropipette in response to a difference in electrical potential between the inside and outside of the micropipette. Biologically active molecules are thereby delivered in proportion to electrical current. We illustrate acetylcholine microiontophoresis in conjunction with micromanipulation to study endothelium-dependent vasodilation in the microcirculation.
We present a preparation for visualizing and manipulating calcium signaling in native, intact microvascular endothelium. Endothelial tubes freshly isolated from mouse resistance arteries supplying skeletal muscle retain in vivo morphology and dynamic signaling within and between neighboring cells. Endothelial tubes can be prepared from microvessels of other tissues and organs.