S'identifier

L'un des dommages courants à l'ADN est l'altération chimique de bases simples par alkylation, oxydation ou désamination. Les bases altérées provoquent un mauvais appariement et une rupture de brin pendant la réplication. Ce type de dommage provoque un changement minimal de la structure en double hélice de l'ADN et peut être réparé par les voies de réparation par excision de base (BER). BER corrige les séquences d'ADN endommagées en supprimant la base endommagée et en restaurant la séquence de base d'origine en utilisant le brin complémentaire comme modèle.

La première étape du BER est la reconnaissance des dommages à l'ADN, qui est effectuée par les ADN glycosylases. Selon le type de base, une glycosylase spécifique coupe la liaison N-glycosidique entre la base nucléotidique et le ribose, laissant le squelette phosphate de l'ADN intact mais créant un site apurinique ou apyrimidinique (AP). Les glycosylases bifonctionnelles font une incision dans la chaîne phosphodiester, entraînant la formation d'un 5’ ou 3’ phosphate. Les glycosylases monofonctionnelles ne présentent pas cette propriété et doivent dépendre d'une endonucléase AP pour cliver la liaison sucre-phosphate, 5’ au site abasic, produisant un 3’OH et un 5’ désoxyribophosphate. Sur la base de l'appariement W-C correspondant, l'ADN polymérase insère la base correcte et utilise son activité AP-lyase associée pour éliminer le phosphate de désoxyribose. L'entaille dans le squelette est scellée par de l'ADN ligase. L'ADN ligase III et l'ADN polymérase utilisent toutes deux la protéine XRCC1 comme échafaudage pour lier le site de réparation.

Des mutations dans les protéines des voies BER peuvent conduire à divers types de cancer. Par exemple, une mutation de la glycosylase humaine OGG1 est associée à un risque accru de cancers du poumon et du pancréas.

Tags
DNA RepairDamaged DNABase Excision RepairDNA GlycosylasesWeak Base PairsModified BasesDNA HelixDNA PolymeraseDNA LigaseExcision MechanismEnvironmental ToxinsDeaminationOxidationAlkylation

Du chapitre 7:

article

Now Playing

7.2 : Réparation par excision de base

Réparation de l'ADN et recombinaison

21.3K Vues

article

7.1 : Aperçu de la réparation de l’ADN

Réparation de l'ADN et recombinaison

26.9K Vues

article

7.3 : Réparation par excision de base : voie de synthèse longue

Réparation de l'ADN et recombinaison

6.9K Vues

article

7.4 : Réparation par excision de nucléotides

Réparation de l'ADN et recombinaison

11.0K Vues

article

7.5 : ADN polymérases translésionnelles

Réparation de l'ADN et recombinaison

9.6K Vues

article

7.6 : Réparer les cassures double brin

Réparation de l'ADN et recombinaison

11.7K Vues

article

7.7 : L’ADN endommagé peut bloquer le cycle cellulaire

Réparation de l'ADN et recombinaison

8.9K Vues

article

7.8 : Recombinaison homologue

Réparation de l'ADN et recombinaison

49.5K Vues

article

7.9 : Redémarrage de la fourche de réplication bloquée

Réparation de l'ADN et recombinaison

5.7K Vues

article

7.10 : Conversion génique

Réparation de l'ADN et recombinaison

9.5K Vues

article

7.11 : Aperçu de la transposition et de la recombinaison

Réparation de l'ADN et recombinaison

14.8K Vues

article

7.12 : Transposons à ADN

Réparation de l'ADN et recombinaison

14.1K Vues

article

7.13 : Rétrovirus

Réparation de l'ADN et recombinaison

11.7K Vues

article

7.14 : Rétro-transposons à LTR

Réparation de l'ADN et recombinaison

17.1K Vues

article

7.15 : Rétro-transposons non-LTR

Réparation de l'ADN et recombinaison

11.2K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.