S'identifier

V-type pumps are ATP-driven pumps found in the vacuolar membranes of plants, yeast, endosomal and lysosomal membranes of animal cells, plasma membranes of a few specialized eukaryotic cells, and some prokaryotes. They are also known as the V1Vo-ATPase, that couple ATP hydrolysis to transport protons against a concentration gradient.

The peripheral or cytosolic V1 domain with eight subunits is involved in ATP hydrolysis. The integral or transmembrane V0 domain containing at least five subunits helps transport protons. This proton translocation activity is vital for cellular processes such as pH homeostasis, endocytosis, protein trafficking, urine acidification, and neurotransmitter release.

While complete loss of the pump function can be lethal, mutations in the subunits are associated with renal tubular acidosis, osteoporosis, neurodegenerative disease, and others, making this pump a potential drug target.

Regulation of the pumps’ activity by different mechanisms ensures that the cell and its organelles maintain the proton gradient. The reversible dissociation of the V0 and V1 domains is due to several factors like nutrients and growth factors that can silence the activity of both subunits. For instance, the reversible disulfide bond formation at the cysteine residues of the A-subunit does not allow ATP hydrolysis to occur.

Modulation of the pump density is another control mechanism seen in epithelial cells. In renal epithelial cells, proton transport in alpha intercalated and epididymal clear cells is controlled by reversible fusion of intracellular vesicles containing a high density of V-type pumps with the apical membrane.

Tags
V type PumpsATP driven PumpsV1Vo ATPaseProton TransportPH HomeostasisEndocytosisProtein TraffickingUrine AcidificationNeurotransmitter ReleaseRenal Tubular AcidosisOsteoporosisNeurodegenerative DiseaseRegulationReversible DissociationDisulfide Bond FormationModulation Of Pump DensityEpithelial Cells

Du chapitre 13:

article

Now Playing

13.7 : ATP Driven Pumps III: V-type Pumps

Transport membranaire et transporteurs actifs

3.5K Vues

article

13.1 : L'importance du transport membranaire

Transport membranaire et transporteurs actifs

16.4K Vues

article

13.2 : Transporteurs membranaires

Transport membranaire et transporteurs actifs

9.6K Vues

article

13.3 : Transport facilité

Transport membranaire et transporteurs actifs

10.3K Vues

article

13.4 : Transport actif primaire

Transport membranaire et transporteurs actifs

9.0K Vues

article

13.5 : Pompes ATPase I : vue d'ensemble

Transport membranaire et transporteurs actifs

7.6K Vues

article

13.6 : Pompes ATPase II : type P

Transport membranaire et transporteurs actifs

4.4K Vues

article

13.8 : Transporteurs ABC : exportateurs

Transport membranaire et transporteurs actifs

4.0K Vues

article

13.9 : Transporteurs ABC : importateurs

Transport membranaire et transporteurs actifs

2.7K Vues

article

13.10 : Transporteurs de glucose

Transport membranaire et transporteurs actifs

22.1K Vues

article

13.11 : Transport actif secondaire

Transport membranaire et transporteurs actifs

6.5K Vues

article

13.12 : Transport transcellulaire des solutés

Transport membranaire et transporteurs actifs

3.3K Vues

article

13.13 : Absorption du glucose dans le petit intestin

Transport membranaire et transporteurs actifs

30.1K Vues

article

13.14 : Régulation du pH dans l'estomac

Transport membranaire et transporteurs actifs

5.3K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.