Accedi

V-type pumps are ATP-driven pumps found in the vacuolar membranes of plants, yeast, endosomal and lysosomal membranes of animal cells, plasma membranes of a few specialized eukaryotic cells, and some prokaryotes. They are also known as the V1Vo-ATPase, that couple ATP hydrolysis to transport protons against a concentration gradient.

The peripheral or cytosolic V1 domain with eight subunits is involved in ATP hydrolysis. The integral or transmembrane V0 domain containing at least five subunits helps transport protons. This proton translocation activity is vital for cellular processes such as pH homeostasis, endocytosis, protein trafficking, urine acidification, and neurotransmitter release.

While complete loss of the pump function can be lethal, mutations in the subunits are associated with renal tubular acidosis, osteoporosis, neurodegenerative disease, and others, making this pump a potential drug target.

Regulation of the pumps’ activity by different mechanisms ensures that the cell and its organelles maintain the proton gradient. The reversible dissociation of the V0 and V1 domains is due to several factors like nutrients and growth factors that can silence the activity of both subunits. For instance, the reversible disulfide bond formation at the cysteine residues of the A-subunit does not allow ATP hydrolysis to occur.

Modulation of the pump density is another control mechanism seen in epithelial cells. In renal epithelial cells, proton transport in alpha intercalated and epididymal clear cells is controlled by reversible fusion of intracellular vesicles containing a high density of V-type pumps with the apical membrane.

Tags
V type PumpsATP driven PumpsV1Vo ATPaseProton TransportPH HomeostasisEndocytosisProtein TraffickingUrine AcidificationNeurotransmitter ReleaseRenal Tubular AcidosisOsteoporosisNeurodegenerative DiseaseRegulationReversible DissociationDisulfide Bond FormationModulation Of Pump DensityEpithelial Cells

Dal capitolo 13:

article

Now Playing

13.7 : ATP Driven Pumps III: V-type Pumps

Membrane Transport and Active Transporters

3.5K Visualizzazioni

article

13.1 : L'importanza del trasporto a membrana

Membrane Transport and Active Transporters

16.6K Visualizzazioni

article

13.2 : Trasportatori a membrana

Membrane Transport and Active Transporters

9.6K Visualizzazioni

article

13.3 : Trasporto Facilitato

Membrane Transport and Active Transporters

10.3K Visualizzazioni

article

13.4 : Trasporto attivo primario

Membrane Transport and Active Transporters

9.0K Visualizzazioni

article

13.5 : Pompe azionate ATP I: una panoramica

Membrane Transport and Active Transporters

7.6K Visualizzazioni

article

13.6 : ATP Driven Pumps II: Pompe di tipo P

Membrane Transport and Active Transporters

4.4K Visualizzazioni

article

13.8 : ABC Transporters: Esportatore

Membrane Transport and Active Transporters

4.0K Visualizzazioni

article

13.9 : ABC Transporters: Importatore

Membrane Transport and Active Transporters

2.7K Visualizzazioni

article

13.10 : Trasportatori di glucosio

Membrane Transport and Active Transporters

22.1K Visualizzazioni

article

13.11 : Trasporto attivo secondario

Membrane Transport and Active Transporters

6.5K Visualizzazioni

article

13.12 : Trasporto transcellulare di soluti

Membrane Transport and Active Transporters

3.3K Visualizzazioni

article

13.13 : Assorbimento del glucosio nell'intestino tenue

Membrane Transport and Active Transporters

30.1K Visualizzazioni

article

13.14 : Regolazione del pH dello stomaco

Membrane Transport and Active Transporters

5.3K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati