JoVE Logo

S'identifier

Infrared spectroscopy, also known as vibrational spectroscopy, is mainly used to determine the types of bonds and functional groups in molecules. In aldehydes and ketones, the carbonyl (C=O)bond shows an absorption around 1710 cm-1. The C=O bond vibration of an aldehyde occurs at lower frequencies than that of a ketone. In addition to the C=O absorption in an aldehyde, the aldehydic C–H bond also gives two peaks in the 2700–2800 cm-1 range. This absorption, coupled with the C=O stretching, is characteristic of an aldehydic group.

Conjugation reduces the electron density in the C=O bond, thereby reducing its stretching frequency. The stretching frequencies of cyclic ketones vary depending on their ring sizes. The strain in larger rings is lower than in smaller cyclic ketones. Stretching frequency increases with increasing ring strain. Therefore, the smallest and highly strained cyclopropanone ring has the highest stretching frequency.

UV-Visible spectroscopy employs UV and visible light to transition between different electronic energy levels. Two major transitions in organic compounds are n to π* and π to π* transitions. The π–π* is a stronger transition but occurs below 200 nm, which is not detectable in UV-Vis spectrometers. Conjugation of these molecules with a double bond or an aromatic ring shifts the absorption wavelength to above 200 nm. Each double bond that is conjugated adds a value of 30 nm to the absorption wavelength of the molecule.

n–π* transition is weaker than π–π* transition. Since the non-bonding orbital on oxygen and the anti-bonding π* orbital on the C–O bond is perpendicular, no overlap occurs between these two orbitals. Hence the n–π* is a forbidden transition and occurs much less frequently.

Tags

IR SpectroscopyUV Vis SpectroscopyAldehydesKetonesCarbonyl BondC O BondConjugationRing StrainElectronic TransitionsN TransitionTransition

Du chapitre 12:

article

Now Playing

12.5 : IR and UV–Vis Spectroscopy of Aldehydes and Ketones

Aldehydes and Ketones

5.0K Vues

article

12.1 : Structures des aldéhydes et des cétones

Aldehydes and Ketones

8.1K Vues

article

12.2 : Nomenclature IUPAC des aldéhydes

Aldehydes and Ketones

5.2K Vues

article

12.3 : Nomenclature IUPAC des cétones

Aldehydes and Ketones

5.3K Vues

article

12.4 : Noms communs des aldéhydes et des cétones

Aldehydes and Ketones

3.3K Vues

article

12.6 : Spectroscopie RMN et spectrométrie de masse des aldéhydes et des cétones

Aldehydes and Ketones

3.6K Vues

article

12.7 : Préparation d’aldéhydes et de cétones à partir d’alcools, d’alcènes et d’alcynes

Aldehydes and Ketones

3.4K Vues

article

12.8 : Préparation d’aldéhydes et de cétones à partir de nitriles et d’acides carboxyliques

Aldehydes and Ketones

3.3K Vues

article

12.9 : Préparation d’aldéhydes et de cétones à partir de dérivés d’acide carboxylique

Aldehydes and Ketones

2.5K Vues

article

12.10 : Addition nucléophile au groupe carbonyle : mécanisme général

Aldehydes and Ketones

5.0K Vues

article

12.11 : Aldéhydes et cétones avec l’eau : formation d’hydrates

Aldehydes and Ketones

3.0K Vues

article

12.12 : Aldéhydes et cétones avec alcools : formation hémiacétal

Aldehydes and Ketones

5.5K Vues

article

12.13 : Groupes protecteurs des aldéhydes et des cétones : Introduction

Aldehydes and Ketones

6.4K Vues

article

12.14 : Les acétals et les thioacétals en tant que groupes protecteurs des aldéhydes et des cétones

Aldehydes and Ketones

3.9K Vues

article

12.15 : Aldéhydes et cétones avec HCN : Présentation de la formation de cyanhydrine

Aldehydes and Ketones

2.5K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.