S'identifier

Consider a particle moving under the action of a conservative force that has components along each coordinate axis. Each component of force is a function of the coordinates. The potential energy function U is also a function of all three spatial coordinates. Force in one dimension can be written as the negative ratio of potential energy change to the displacement along that coordinate. For minimal displacement, the ratios become derivatives. If a function has many variables, the derivative only takes the variable that the partial derivative specifies; the other variables are held constant. Thus, adding the force along the three spatial coordinates, the net force can be written as the vector sum of partial derivatives of potential energy with respect to each coordinate, multiplied by the corresponding unit vector. In other words, force in three dimensions can be expressed as the negative of the gradient of the potential energy function.

Let us understand this with the help of an example. The potential energy of a 3-dimensional force is given by

Figure1

where k is a constant. Derive Fx, Fy, and Fz, and then describe the total force at each point in terms of its coordinates. Here, the known quantity is potential energy. The unknown quantities Fx, Fy,Fz, and the total force vector need to be calculated. Force is related to potential energy by the following equation:

Figure2

Substitution of U in the above equation gives the expression for Fx, Fy, andFz in terms of the coordinates x, y, and z. The vector force is the sum of the force along each coordinate. In other words,

Figure3

Substituting the values of Fx, Fy, andFz in the above equation, we get the net force vector as

Figure4

This text is adapted from Openstax, University Physics Volume 1, Section 8.4: Potential Energy Diagrams and Stability.

Tags

ForcePotential EnergyThree DimensionsConservative ForcePartial DerivativesGradientVector SumKinetic EnergyPotential Energy Function

Du chapitre 8:

article

Now Playing

8.10 : Force and Potential Energy in Three Dimensions

Énergie potentielle et conservation de l'énergie

4.7K Vues

article

8.1 : Énergie potentielle gravitationnelle

Énergie potentielle et conservation de l'énergie

15.2K Vues

article

8.2 : Énergie potentielle élastique

Énergie potentielle et conservation de l'énergie

15.5K Vues

article

8.3 : Conservation de l’énergie mécanique

Énergie potentielle et conservation de l'énergie

13.2K Vues

article

8.4 : Travail effectué sur un système par une force externe

Énergie potentielle et conservation de l'énergie

1.9K Vues

article

8.5 : Forces conservatives

Énergie potentielle et conservation de l'énergie

11.6K Vues

article

8.6 : Forces non conservatives

Énergie potentielle et conservation de l'énergie

7.2K Vues

article

8.7 : Conservation de l'énergie

Énergie potentielle et conservation de l'énergie

8.5K Vues

article

8.8 : Conservation de l'énergie : applications

Énergie potentielle et conservation de l'énergie

6.2K Vues

article

8.9 : Force et énergie potentielle dans un système unidimensionnel

Énergie potentielle et conservation de l'énergie

5.2K Vues

article

8.11 : Diagrammes d'énergie - I

Énergie potentielle et conservation de l'énergie

4.8K Vues

article

8.12 : Diagrammes d'énergie - II

Énergie potentielle et conservation de l'énergie

4.5K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.